IMiS®™/ARChive Server

Manual
Version 9.9.1810

IMAGING
SYSTEMS

Imaging Systems Inc.
Brnciceva 41g
Ljubljana

Slovenia

TABLE OF CONTENTS

T FOREWORD........oi et tses s sse st esssstesssss st st ss st s s ssss e sssssesses st essassassssssssassasssssssesssssessessessessassessassassansans 8
1.1 ADOUL the dOCUMEBNEATION ...t bbbt 8
= =T oo 11 el = T Lo =g o = OO OO TP U U TPR 8
BT T 7o 1Y/ T v T =TSR 8
Te4 ADDPBVIAEIONS .ot Rt 9

2 INTRODUCTION. ..ottt ssesssssesssssessssssssssssssssssssssssssssssssssessessessessessesssssasssssasssssassssssssssssssssessessessessessessans 12
.1 PrESENEATION ..ot 12
2.2 Versions and idENEIIEIS ... s 13
G T U T vi o = 11 vy PO RT 15

3 TECHNICAL DOCUMENTATION ...ovvevreeeierississtssisssssssssssssssssssssssss s ssssssssessessessesssssessssssssssssssssssssssssssssssssens 16
3.1 SEIPVER @rCHIEECEUE. ... s s 16
3.2 AGEPIBUBE .ot 23

321 AGERIDULE GYPES ettt 24
B.2.2 PAPGMEEENS ..ottt s bbbt 31
3.2.3 LiNKS £0 GEMIPIAEES ...ttt bbbt bns 33
B.2.4 NAMING ottt sttt s bbbt s bbbt en bbb st e st en b e st enten e tns 38
3.2.5 SYSEEM GGEMIDUBES ..ottt ns 39
3.2.6 Email docUmENE atEriDUEES ..o s 51
3.2.7 Physical record management attribUEES ... rsssesesens 55
3.2.8 Attributes of transferred FECONAS ...t 58
3.2.9 Attributes of retention policies and disposition holds........cencseees 63
3.2.10 AGEribULES Of PEVIEW PROCESSES ...c.cveecicieieisieistssisse ettt sttt ssssessssassessssns 65
3.2.11 Attributes of VErsioned CONGENE ... ssessessenes 70
1 T T = o 7 Y PRSP 71
T T B Y/ 0T PR ST 71
B T o 1= 0= o]) OO P T RTTRT 72
3.3.3 COMIPONEBNES ettt ettt ettt bbb bbb bbbt b bbb bbbt entes e bns 73
B.3.4 TEMPIGEES ..t b bbb bR bbb bbb 74
B R R T A Vo o= P 75
B.3.8 IENEGIIBIS. cc.u s 89
B.8.7 LI CYCIB ettt s e st 91
B 1 T U T 1 i v = [OO 103
TG I I = =1 vt oY riTo] TN o =T oo o 1= 0P R 115
1o TG I L@ I @7aT o f=T o il o F= T F=To [T =] o | v TR 119
B.31T REIBIENCES. ...t bbbt 124
L I P - =T o o] o= OO PO U PR 124
1 R O o= Tt [TP 127
3.4.1 ClassifiCation COUBS ...t ssss s ssessassesssssesssssnsas 128

3.4.2 Classification SChEME SELEINGS ... ssssssens 129

3.4.3 Moving records in the classification scheme (re-classification)........ccccccoveeicnnee. 130

3.0 SBANCIN R e 132
3.5.1 Data protection and security When Searching............c s 132
3.5.2 SBArCH SYNEAX PUIBS.......ciiecec et nes 132

3.8 AULNBNEICIEY ottt bbb bbb bbb bbb bbb a bbb 136
B 38 T I 57 T [v o T OO 136
BT = 0 o o] =] o) v OO PPRTTTT 137
3.6.3 Storing digital CErtIfICATES ...ttt 140
B.B.4 ERS ...t et 144
B R T A | PP 164
S T T N0 =T =1 vr= o] [T PP 170
B.B.7 RUIES .ttt st a st 175

3.7 REVIBW PIOCESS ...ttt sssss s sssss st s ss s s s sss s s s s s sssnsasssas 177
3.7.1 Preparation PRASE......... sttt s se s st s saen 179
3.7.2 Decision-making PRESE ...t ssssesssssssesas 181
3.7.3 IMPIeEMENEALION PRESE ..o e s 181
3.7.4 ThE filEration PrOCESS....cccciieiirrieisinse st s st s s sssesanes 184
3.7.5 XML dOCUMENTE fOPMAE ...t ssesssss st sssssssssssssssssssssssssessessesses 185

N T I 1= ol v YA =T= oL o= TR 194
L T 5/ 0T T PP PRSP 195
3.8.2 Entities defined by the SYSEEM.... s ees 197
3.8.3 ENGIGY COMPONENTS....cciccicissesrsse st s st ssssnnns 198
B R A A 1 1T P 201
3.8.5 AULNENEICATION c..vvcc bbb 201
3.8.8 The directory entity lif& CYCIB ... 21
3.8.7 SYNCAPONIZAGION ...t bbb s s 213
B.B.8 PlUG NS sttt naeen 214

3.9 Backup copies and restoring data........ccese s 228
3.9.1 Creating backUp COPIES ... bbb b b eee 231
3.9.2 RBESEONING DAGA ...t 232
B.9.3 EXAMPIE ottt b bbbttt 233
3.9.4 Problems restoring aba....... sttt tessssssessessssessesans 234

B @) o] o= [TSR 235
I I 0 1= 236
B10.2 VOIUMES .ottt s s 238

1 T V=Y o= 11 o [T TPT 239

4 SYSTEM REQUIREMENTS ...t sssesnes 240

4 O Tl LY=o OO E PPN 240
411 Planning SErver ProCESSON POWENisiseissssssssssssssssssssssssesssssssesssssssessssssesssns 241
4.1.2 Planning SErver MEMOrY CAPACILY ...t sssse s sssssssssssssesasens 241

41.3 Planning server hard diSk CAPACIEY. ... ssssssesees 241

41.4 CommuniCatioN CRANNEIS ...ttt sttt st st s s bbbt 243

415 Connecting £0 NEEWOIrK NArAWAErE.......c.cccivecseecrres st ssssesssssssenas 243
41.8 AdmiINISEratior PIgNES ...ttt sttt 243
4.1.7 Managing hardware OpPEratioNS........ s sssssssess 244
4.1.8 MiNiMuUM PEOUIPEIMENES ...c.cceiciieieeeeee ettt ettt et st s bbbt esbe st esbesssbestenans 244
419 Recommended PEUIFBIMENES ...ttt sttt b e besse st essesssbessesans 244
4.2 SOMEWEAE .ot Rt 245
4.2 OpErating SYSEEIMIS ...t ettt e et s st ens 245
4.2.2 List of required SYySEEM BO0IS ...ttt 246
4.2.3 List of required SyStEmM [IBrariEs. ... seens 246
4.2.4 MiNiMUM PEOUIPEMENES ...c.cccucieicireieietsstese sttt s st st es st sstesssssstesssssssesssssssessesans 247
INSTALLATION ..ottt ettt ssssstss s st bbb st s bbbttt bbb aen s naensns 247
5.1 INSEAllAtiON PrOCESS. ...ttt 247
5.2 PoSst-installation PrOCESSES ...ttt ettt 248
9.2.1 Settings for the number of simultaneously opened files........ccocvivcnnieienieien, 248
5.2.2 Settings for automMatiC SEArt UD...ccecerces et 249
5.3 Testing installation and SEELINGS. ...t 250
UPGRADING ...ttt sseesessesssssessssssssssssssssssssssssssssssesssssessessessessassassasssssassssssssssssssssssessessessessessessessassassanes 251
(ST I I o TSI T o [ar=To [N o o Lo =T =] TR 251
6.2 Possible complications during Upgrading........ccs s 252
BEMUOWV AL ...ttt ssesses st es st es st st ss st et s st ssessessessassassnsnsunsune 254
7.1 The REMOVAl PrOCESS ..ottt s bbb naen 254
ADMINISTERING THE PRODUCT ..ot ssssssssssssessessessessesssssasssssssas 255
8.1 Starting and ShUEEING dOWN ...t ssssnis 255
8.2 Logging OPErationNal BVENLES ...ttt sttt sttt es st es s 256
LT T ©aT o1 ila [T = vi o] [FSUE o T T T T TP T TR 258
B.3.1 FOPBSEEN BASKS ..ttt st 258
8.3.2 Configuration processes with CoNS0IE GO0IS ... 261
L N 1V [[1] vl o= 1T PP 263
8.4.1 The iarc.conf configuration filE ... 263
TROUBLESHOOTING ..o oeieieiiesisisssssisssssessssssssssssssssse s ssessessessssssssesssssssssssssssssssssssssesssssessessessessessassassseas 272
9.1 How can problems B8 @VOIABAT ... b s bns 273
9.2 FrequUENE PrOBDIEBMIS...... bbb bbb bbb bt ns 273
9.3 Less frequUENE ProbIBMIS ... e et et 282
9.4 List of service errors entered in the 0peration 10g ... 285
G470 LeVel O — EMEBIRGENCY ...ttt sttt sttt snns 285
L e AV B B AN 1= o OO 285
G.4.3 LEVEI 2 — CriBICAL ..ottt ettt ens s tns 286
D.4.4 LEVEI B — EPTOP ettt sttt sttt ess sttt ssss s sssssessens 288

.45 LEVEI 4 — WArNING. ..ottt s sss s s st st ssssns 31

TABLE OF IMAGES

Table of images appearing in the manual

Image 1: IMiS®/ARChive Server component architecture bluepring. ..., 16
Image 2: Logical links between attributes, templates and entities. ..., 34
IMAGE 3B: HOW ACLS WOPK ..ottt sttt ettt bbb 76
Image 4: Hierarchy with a class, folder and 2 doCUMENES.......c.cene e 86
IMAgE B: ENLILY I8 CYCIB et s b bbb bbb 92
Image 6B: Entity life cycle in the working memaory of the SErVEr ... s 94

Image 7: Entity role in the process of keeping the authenticity of data for long-term archiving

... 136
Image 8: How the hashing funCEIoN WOPKS.......... et snnes 138
Image 9: Generating and verifying a digital SIgNature ... sesessenns 138
Image 10: The digital Certificate Chain ... s s 140
Image 11: Adding a digital certificate £0 @ SEOrE ... 141
Image 12: Creating an AlP for generating authenticity proofs........ce e, 145
Image 13: The authenticity proof reNEewWal PrOCESS.......ci s 146
Image 14: Example of verifying data authentiCity.......cccccncncne e 146
Image 15: The time stamping process for an individual AlP ... 147
Image 16: The time stamping process using a IMErkle tree.......cnnneneinene s 148

Image 17: The simple authenticity proof renewal process in combination with proof generation

... 149
Image 18: The part of the complex authenticity proof renewal process (steps 2, 3, 4] 150
Image 19: EXample Of 8 MEIFKIE ErEE.......oviir st 152
Image 20: Example of a reduced tree for nodes H1 and HE........... e 153
Image 21: Simple archive timestamp FPENEWAL.......cc s 160
Image 22: Processing an AIP and its associated ERS ... 162
Image 23: Complex renewal With @ MEFKIB TrEE ... 162
Image 24: The PIUG-iN CONCEPE ..ottt bbb bbb 171
Image 25: Course diagram of the PBVIEW PrOCESS..........ccceeeeee ettt sttt sessenans 178
Image 26: Preparation phase of the PEVIEW PrOCESS.......ccsc i 180
Image 27: A user and GhEIP USEIN gROUPS ...t s st st tesssanens 196
Image 28: Example of USEr grouUp NESEING ... st st st 196
Image 29: Man-in-the-middle attack on IMiS®/ARCHIVE SEIRVEN ... 203
Image 30: LDAP aUEhBNEICAEION ...t saen 208
Image 31: Kerberos authentiCatiON ... s s s s 210
Image 32: Interconnected processes in the life cycle of an entity in the directory........oeeuae. 21

IMAage 33: VErSIONING PrOCESSoccciireictreieese ettt st sse st sss bbb s st s s bt s st st santnes 240

LIST OF TABLES

Below is a list of tables appearing in the manual:

Table 1: Different styles used in the dOCUMENEALION. ... 8
Table 2: Abbreviation usage in the docuMENEAtION ... 1
Table 3: List of terms used in the dOCUMENTAGION ... essessssenes 1
Table 4: Operations @Nd PIGhES ...ttt es s b ensenas 80
Table 5: Restrictions on viewing public MEtAdata ...t 82
Table 6: Example of a retention policy CONfiguration ... essessssessesns 17
Table 7: Values of the "Source0peration” [8DE1.......... e 121
Table 8: Categorization (EXAmMPIE 1) ..ttt sssesssssesanes 125
Table 9: Categorization (EXAMPIE ... sssesessessens 125
Table 10: Catedgorization (EXAMPIE 3 ... ssssessesssssesssssssssssssssssssssssssssssssessessessens 126
Table 11: Categorization (EXAMPIE 4) ...t ssssssssssesssssssessees 126
Table 12: Categorization (EXAMPIE Bl.......cccee e ssessssssssssssssss s sssssssssssssesssssesssssassnes 127
Table 13: XML elements of the EvidenceRecord tag........ s sesens 154
Table 14: XML elements of the ArchiveTimeStampChain £ag.......cccoinnessesseens 154
Table 15: XML elements of the ArchiveTimeStamp £ag ... 156
Table 16: XML elements of the SEQUENCE Tag......ccui s ssssssenns 156
Table 17: XML elements of the TimeStamp £ag......ccce s ssens 157
Table 18: Supported GIMESEAMPS ... s et 157
Table 19: Supported cryptographic EIEMENE LYPES ... sssssees 158
Table 20: XML elements of the HEAAEN Lag ...t ssse s ssssesaes 165
Table 21: The AIP interpretation depends on the value of the Version attributecccccecevvvenes 165
Table 22: XML elements of the ALERIDULE GG sae s 166
Table 23: XML elements of the »DIgESEE TaG ... seens 167
Table 24: Algorithms and corresponding URI'S ... ssssssssssssssssessssssesens 167
Table 25: XML elements of the »Signatured Sag ... ssssesaens 168
Table 26: XML elements of the RevocationData tag ... sesssssssessessesssnees 170
Table 27: Supported types of information about the revocation of a digital certificate.............. 170
Table 28: XML elements of the “REeVIBW” T8 ... ssssssesees 186
Table 29: XML elements of the "Header” £ag ... ssssnes 186
Table 30: XML elements of the "ENGity” tA0......ccccccceeese ettt 187
Table 31: Paosition of bites that represent allowed aCtioNS.........cc s 188
Table 32: The “ReVieW” £ag BIEMENTES......c.c s sa s 1890
Table 33: The “header” £ag BIBMENES.......... bbb bbb saes 190
Table 34: The “Entity” £8g BIBMENES ... s s 191
Table 35: The “Beport” tag BIEMEBNES........ bbb b bbb saes 192
Table 36: The “Header” tag BIEBMENES ... s se s saes 193
Table 37: The “Entity” £ag BIEMEBNTES ... bbb aes 193

Table 38: Common LDAP plug-in configuration [ahels.............cccccece e 216

Table 39:
Table 40:

Table 41:

Table 42:
Table 43:
Table 44:
Table 45:
Table 46:
Table 47:
Table 48:
Table 49:
Table 50:

Configuration labels of the Active Directory plug-in ... 217
Configuration tags for SAL plUg-iNS ... ssssesssssssesns 218
Configuring MAaPPINGS. ..ottt et sttt bbb bbb 219
TYPES Of MAPPINGS v bbb bbb 220
Values of the "BYPEEXE" GtEIIDUEBE ...ttt sneas 221
The order of »typeExt« implementation based on the type of mapping.......ccocecveuee. 221
Example of user attributes and their VAIUES.........ce s 223
Results of the conversion (EXamPIE 2) ... sessssssssssessssssssssenss 224
Results of the conversion (EXample 3) ... ssssssessssessens 225
Rezultati pretvorbe (PRIMER 4) ...t ssssssssessessesssssns 226
Tables with a description of data for backups and restoration...........ccccoevcincencinne, 231
Average scanned document sizes using different scanning methods.........ccccovvviennee 242

1 FOREWORD

This foreword contains a description of the contents and form of IMiS®/ARChive Server

documentation. It provides useful advice on technical and content aspects of product use.

1.1 About the documentation

The documentation provides a description of the server architecture, individual object
components, mechanisms for ensuring authenticity and security and procedures for installing,

configuring and administering IMiS®/ARChive Server.

1.2 Target audience

The documentation is intended for experienced system administrators with a good knowledge
of different versions of the Linux operating system and with experience installing, configuring
and administering information systems.

Every administrator in charge of installing and maintaining IMiS®/ARChive Server must be

familiar with these processes.

1.3 Conventions

Various styles and methods for writing important information are used in the documentation.

They are summarized in the table below.

Types of writing Purpose of use
Normal Basic text in the documentation
Normal bold Chapter headings in the documentation (levels 1 to B6)

Normal underlined Additional options for subchapters within an individual

level

The names of functions or actions in the framework of

“Normal”
the selection options
Normal italic Go to another chapter
Monospace Shows console commands, files, directories, ...
Monospace bold Shows user input

Table 1: Different styles used in the documentation

1.4 Abbreviations

The table below describes abbreviations used in the texts and illustrations:

Abbreviation Description

AES Advanced Encryption Standard
(an advanced encryption algorithm)

AIP Archival Information Package (A content and metadata “summary” of
an entity merged into an XML document)

ACL Access Control List
(a list of access rights)
CA Certificate Authority

(a trustworthy issuer of digital certificates)

CIFS Common Internet File System
(a communications protocol for data, printing and other services on

the network)

CRL Certificate Revocation List

(a list of revoked digital certificates)

CRM Customer Relationship Management

(a system for customer relationship management)

DMS Document Management System
(a system for document management)

EML Email message
(format for saving email messages)

ERP Enterprise Resource Planning
(a business information system)

ERS Evidence Record Syntax
(form of data for ensuring the long-term integrity
of timestamps)

FIPS Federal Information Processing Standard

(an information processing standard)

HA High Availability
(a system property - high availability)
HMAC Hash-based Message Authentication Code

(an authentication method that includes a hashing function intended

for checking the integrity of the data and authentication)

HSM Hierarchical Storage Management
(an object-storage concept - hierarchical document archiving)

ISDM Information System for Document Management

Abbreviation

Description

LTANS

Long-Term Archive and Notary Services

(a group of technical procedures and functionalities for ensuring
archiving over a longer period of time; also, the name of the group that
sets these standards)

MIME

Multipurpose Internet Mail Extensions

NAS

Network Attached Storage

NAT

Network Address Translation
(a translation of network addresses, a process for hiding private

addresses)

OCSP

Online Certificate Status Protocol
(an online protocol for checking the validity status of digital

certificates)

PDF/A

Portable Document Format
(a format for long-term document storage - .pdf)

POSIX

Portable Operating System Interface
(a standard interface between the software application and operating
system)

RAID 5

Redundant Array of Independent Disks
(a system for using and organizing disk drives)

RFC

Request for Comments
(a technical and organizational document, specification or public
document intended for the exchange of opinions on the topic

described)

RHEL

Red Hat Enterprise Linux

(a Linux server platform made by RedHat)

RPM

RedHat Package Manager
(an application for managing installed software in the Linux RedHat
platform; also, the software installation package for this management

application)

SCSI/SAS

Serial Attached Small Computer System Interface

(a standard disk drive interface)

RSA

Ronald Rivest, Adi Shamir, Leonard Adleman
(a public-key encryption algorithm)

SLES

SUSE Linux Enterprise Server

(a Linux server platform made by Novell)

SRP

Secure Remote Password

(an encryption protocol for safe user authentication)

SHA

Secure Hash Algorithm

(algorithms for calculating a content hash)

TCP/IP

Transmission Control Protocol / Internet Protocol

(a family of network protocols)

Abbreviation

Description

TSA Time Stamp Authority
(an agency for issuing certified timestamps)
TIFF Tagged Image File Format
(a format for long-term document storage)
URI Uniform Resource Identifier
(a uniform resource identifier that prescribes an algorithm for
converting an AIP to a normal format)
X.509 (the ITU-T standard for public key infrastructure use)
XML Extensible Markup Language
(a markup language for hierarchically structuring data in the form of
text files)
XMLDSIG XML Signature
(a specification for XML records for digital signatures)
XSD XML Schema Definition
(a W3C recommendation for defining the structure of XML
documents)
W3C World Wide Web Consortium
(a standardization body for suitable internet techniques)
WORM Whrite Once Read Many
(a principle of object storage on an archive server)
Container A generic element for data storage

Table 2: Abbreviation usage in the documentation

The table below describes terms used in the texts and illustrations:

Term

Description

IMiS®/ARChive Server

IMiS®/ARChive Storage Server

(archive server for object storage)

IMiS®/Scan

IMiS®/Scan client
(IMiS client for scanned paper documents)

IMiS®/Storage Connector

IMiS®/Storage Connector interface
(interface for transferring archived objects between application and

archive server)

IMiS®/View

IMiS®/View client
(IMiS client for viewing scanned documents)

Table 3: List of terms used in the documentation

2 INTRODUCTION

2.1 Presentation

IMiS®/ARChive Server is a software module for the safe long-term storage of all types of
objects of electronic origin and objects digitized using various digitization processes (such as
scanning).

It is a comprehensive solution for ensuring the safe, long-term storage of documents, and as
such provides for sustainability, integrity, orderliness, proof of origin of records and access to
records for the entire duration of their storage. It is scalable, and a practically unlimited
qguantity of binary documents can be stored. The delivery and display speed of the archived
objects is practically not dependent on the size of the archive.

Technological measures are used to prevent the deletion or alteration of archived records.
Access rights can be managed to ensure safe access at any time and from any location.
Suitable proofs are used to ensure the authenticity of the archived content (hashes, digital
signatures with digital certificates, timestamps).

The structure, creation and verification of these proofs are conducted in accordance with the
ERS standard, the most sophisticated standard available. The audit trail records all access,
qgueries and changes in IMiS®/ARChive Server.

An electronic archive presents a number of advantages over a physical archive.

Records archived in electronic form are easier to manage and essentially more efficient.

Just searching for records in the electronic archive is incomparably faster.

A simple search query can be used to access records in an instant. This would be much more
difficult with a physical archive. The use of advanced technologies (OCR, FTS) greatly
contributes to enhanced efficiency, as it enables searching by full document text.

Access to the archived content is available simultaneously to an unlimited number of users
(provided they have rights) in different locations and in different applications. The time between
when a need for a particular content arises and access to this information is essentially
shorter than in the case of physical records.

The storage and administration costs of physical records increase with the amount of records
stored, and quickly exceed the costs of electronic archiving.

Physical records can also be damaged, and this can result in the irreplaceable loss of key
information. Unlike electronically archived content, physical records can be misplaced,

lost or even intentionally misappropriated.

IMiS®/ARChive Server can function as a standalone electronic archive, or the user may use the
interface to connect to different application servers.

Because of the highly powerful connection modules, third-party applications can perform all
archiving processes and archive entity life cycle processes, manage access rights, conduct
searches using metadata and full text, etc.

The archive system architecture is flexible and enables a large number of archive servers and a

wide range of roles in the hierarchy to be set up.

2.2 Versions and identifiers

The marking of versions of the IMiS®/ARChive Server software module is based on a sequential
scheme with 4 separate numeric identifiers (MAJOR, MINOR, RELEASE, BUILD) and an end
identifier for the target processor architecture (ARCHITECTURE) (Linux standard).

This is the system most widely used throughout the world.

Additional product specific attributes are added to the name of the RPM installation file.

These consist of a unique archive identifier (ARCHIVEID), an identifier of the databases
contained (DATABASE) and an identifier of the installation platform (PLATFORM). These are not
recorded in the RPM database. They are available only to make it easier to distinguish and find

the installation file:
imisarc.MAJOR.MINOR.RELEASE-BUILD.ARCHIVEID.DATABASE.PLATFORM.ARCHITECURE.rom

Example: imisarec.8.9.1810-600.0001.rdm.el4.[386.rpm

The scheme is therefore made up of the name of the IMiS® module (“imisarc”) and the following
elements:

e MAJOR: The identifier in the MAJOR position signifies the main/major version of the
product. It is arbitrary and changes with regard to the volume of the changes and
functionalities introduced. The identifier in this position changes the least.

In the event that it is changed, it signifies a major difference in the product compared to
the previously issued version (with a lower MAJOR version).

This identifier has a range of values from 1-n; it is continuous and can only increase.

¢ MINQOR: The identifier in the MINOR position signifies a minor version of the product.
It is arbitrary and changes with regard to the volume of the changes, functionalities and
fixes introduced. This identifier frequently changes and signifies smaller changes and
fixes in the framework of the same product generation, which is marked with the
MAJOR version. Its range of values is from 1-n; it is not continuous and with each
change to the MAJOR version it reverts to the base value (1).

e RELEASE: Unlike the arbitrary range of values used throughout the world, in our
product, this identifier is specific, as it signifies the chronological component of the
product release using the “YYMM” format. MM signifies the month the product was

released (values from 1 to 12) and YY signifies the last two digits in the year;
Example: The product release for October 2018, as shown in the RELEASE identifier, is 18710.

e BUILD: The identifier in this position signifies the unique serial number of the product
build. These values never repeat. In the case of a minimal change to the product within
the same month, this identifier may be changed; in this case, all other identifiers remain

the same. Its range of values is from 1 to n; it is not continuous and can only increase.

e ARCHIVE ID: Every instance of the installed product is assigned a unique identifier.
This identifier is also used in the product security segment and in object identifiers.
RPM files are delivered to clients. These files are non-transferable and are intended only
for a concrete instance of the product. Its range of values is from 0001 to nnnn.

e DATABASE: This identifier signifies the database with which the product is distributed.
The range of values at the time of publication of the documentation is BDB and RDM.

e PLATFORM: This identifier signifies the type of installation platform the installation
package is intended for. The range of values sles8, el3 and el4
signifies the target platform. If it is a discrete platform, a suitable equivalent must be
found, in line with the environment of the required system libraries.
We help our clients make this choice, and they can also help themselves by using
compatible system libraries that also enable an older (in terms of platform) product to
run on newer platforms (for example, the el3 installation package + compatible libraries
for the rhel3 and rhel4 platforms).

Criteria for specifying the arbitrarily determined identifiers are defined by the internal rules of

the company and are subject to the process of managing change.

2.3

Functionality

The structured archiving of contents of electronic origin or contents digitized through
the scanning process.

The storage of the metadata of archived contents using structured attributes linked in
metadata schemes determined in the framework of hierarchical entity templates.

The storage of system critical attributes that affect the life cycle of the stored contents.
The storage of metadata and email content.

Using metadata to manage the storage of physical records.

The storage of the metadata of transferred records, which cannot be changed.
Searching metadata using queries with logical and priority operators.

Searching saved content by content elements (full text search).

Calling up contents using external and internal identifiers and using classification codes.
Managing a hierarchical classification scheme.

Sorting archive contents in a classification scheme with the option of adding, deleting,
editing and moving entities.

Managing the confidentiality of records.

Managing hierarchical access rights for the saved content, down to the level of individual
metadata.

Ensuring authenticity of the records through the creation and long-term maintenance of
authenticity proof elements for the records (LTANS).

Directory services to support user log in, management of access rights to the saved
content and the expansion of the data of directory entities when used in metadata
attributes.

Recording and maintaining the audit trail of actions performed on the saved content and
a secure view of the trail by authorized persons.

Capturing and verifying the authenticity of contents by checking the validity of their
embedded digital signatures.

Versioning documents.

Ability to use both IPv4 and IPvB protocaols.

Encryption of connections between the service and its clients.

A highly scalable archive system with a practically unnoticeable transaction processing

delay in the case of large inventories of archived contents (over 10 million entities).

3 TECHNICAL DOCUMENTATION

3.1 Server architecture

IMiS®/ARChive Server is the server component of the IMiS® electronic document management
system. Its modular design enables a high level of adaptability to the different information
systems today’s largest organizations use for their operations.

At the heart of the system is its logical core, which links:

e Support services associated with external sources of information that function
independently in the framewaork of the server instance.

e Internal logical services that provide support for the core in its decisions based on
scalable business logic and that contribute to the high performance and throughput of
the system.

¢ Network services that see to the exchange of information between server clients and
the core on the one hand and that offer an integration point with back-end applications

on the other. The latter exchange statistical information with the core about activity and

settings.
Client Network Service Administration Service Network 1/O Services
-) Entity s \ Audit s
Entity Query ‘ : Security ‘ ’ Certificate
3 Collections i Logging .
Cache) | Engine Engine Engine Engine L Store Core \!\IIth
y &y W W oY W Service
Engines
IMiS/ARChive Core
Content SHOE L : Content Full Text
Database P Archiving Directory S Indexi Internal / Support
Service ALy and Notary Service torage nacAne Services
Service Servi Service Service
ervice
Database Content TSA interface Ext. directory Stg. volume Full Text Plugable interfaces to
Service plugin \ Parser plugins plugins plugin drivers Engine plugin External Services
J L J J i
External or Platform Services External Services

Image 1: IMiS®/ARChive Server component architecture blueprint.

Physically, the server represents 3 processes:

e The main process, “iarcd”: a connection process that manages the support processes:
- Receiving requests for new connections made by clients
- Selecting logical processes for processing client connections
- Collecting statistical data about server activity.

e Storage Volume Manager “iavol”; a process for managing volumes of archived content.
In its threads, this process sees to optimal communication with permanent disk capacity
resources, in line with their type and architecture.

It is a support service for other IMiS®/ARChive Server processes which require these
services for their operations (for example, the logical process).

e The logical process “iarcd”; with its threads, this process sees to operations that users
request from the archive. It is the owner of threads, which individually perform certain
support services, including:

- Content indexing by full text
- Maintaining the authenticity of the archived contents

- Optional synchronization of the directory with external directory service resources, ...

The logical level of the server consists of independent or mutually dependent services,
which provide the core with the following:
e Support for decisions on event processing methods.
e (Caching current objects which it makes sense to load to memory.
e Support for access related decisions.
e Support in maintaining the audit trail.
e The communications level of the service, which exchanges information with the clients of

the service.

Services are structured into following layers:
e External services layer, which enables the system to consume sources of information
which are not part of the system.
e Embedded services layer, which provides required and optional services to the core.
They enable the independent provision of certain services that aren’t directly linked to
the core; on the one hand, they communicate with the core, and on the other they use

plug-ins to access platform resources and external services.

e The system core with internal services which consolidates all different layers of services
with built-in business logic that provides structure and rules for safe and reliable records
keeping.

e The communications layer which sees to the exchange of data between the core and
clients; it supports different network protocols, traffic encryption and information

encryption standards.

The remainder of this chapter will present the individual services from the standpoint of their

importance for server operations.

Database Service

Importance: Critical

Description: This service provides the system with data collections made up of tables and
indexes necessary for operations. The service is designed abstractly, and works through the
database plug-ins specified for the technology and for the database collection provider.
The following plug-ins are currently supported:

¢ Raima Embedded Database: An embedded database that users with rights can access

locally through environment libraries for work with the database.

The system saves most information associated with the saved entities to the database.
Stored content is an exception, as this is stored in the framework of a different service and in

different containers.

Content Parser Service

Importance: Mandatory

Description: This system of services is used to parse contents archived by clients.

It is designed on the principle of plug-ins which process specific types of content based on the
ContentType (MIMI type) of the content. Each plug-in can provide the service the following

functionalities:
e Exporting content text.
e Exporting content metadata.
e Exporting embedded digital signatures.
e Exporting the digital certificates of embedded digital signatures.

e (Checking the validity of embedded digital signatures.

The system uses these functionalities:
e (Content parsing for checking content validity.
e (Capturing embedded electronic signatures and their associated digital certificates.

e Support for full text indexing.
The service for plug-ins currently uses Tika and iText (Apache project) for parsing
application/pdf content and a proprietary technology for parsing content in the image/tiff and

text/xml formats.

Long term Archiving and Notary Service - LTANS

Importance: Not required

Description: This system optionally provides for the creation and long-term maintenance of
authenticity proof elements of the stored content. The system is not essential for the
operations of the archive system if the user does not require this service.

The service encompasses all closed entities, which it files in an entity inventory based on
defined parameters. It provides authenticity proof elements for all entities in the inventory.

At the same time, it automatically maintains already existing authenticity proof elements and
builds trees of hashed proof elements together with the new elements. It uses timestamps
from different providers of trustworthy timestamps to protect these proof elements.

It obtains them via plug-ins that are specific to each timestamp provider. Additional protection
from timestamp validity brakes can be provided by the use of multiple parallel timestamps from
different providers of trustworthy timestamps.

By doing this the system can ensure the validity of proofs even in the rare event that the
validity of timestamps is revoked before they expire.

For more information see chapter Authenticity.

Directory Service

Importance: Critical
Description: This service provides support for directory services used by:
e The subsystem for the access logic of the saved content.
e The subsystem for storing metadata attribute values.
The service enables the maintenance of directory entity attributes (data on the user,
the security components used to login/authenticate, data about groups to which the user

belongs, etc.) and membership of directory entities (users, groups) in different groups.

The directory service can optionally be linked via plug-ins to external directory service
resources in the sense of consolidated and centrally oriented directory services
used in the framework of different systems on a distributed basis.

For more information see chapter Directory Services.

Content Storage Service

Importance: Mandatory

Description: The system uses this service to permanently store content archived by clients.
It is designed on the principle of plug-ins which optimally manage different, specific types of
content containers. The system can therefore distinguish between different types of local
content containers and different types of remote content containers.

In line with the technology, it provides the core a uniform level of content storage.

The archived content inventory is saved in line with the principles of hierarchical storage

(http://en.wikipedia.org/wiki/Hierarchical storage management) on the logical level of the

service for optimal use and low archiving costs. If this service is not appropriately installed,

the system can function and save entity attributes, but not content.

Full Text Indexing Service

Importance: Not required

Description: This service provides the system and its users with a functionality for searching
phrases in index of text extracted from archived content. It is designed on the plug-in model,
which enables users and core to index new or modified content and later use the index for
searching.

The system currently ships with plug-in to the Apache’s Lucene runtime, which is bundled.

If the user does not require the full text search function for their archived content, this service

can be disabled, as it is not critical for the functioning of the system.

Entity Cache
Importance: Critical

Description: This is an internal service is autonomously managed. The system uses a powerful
cache model for all entities opened by users or other services at a certain point in time.

In line with its model, the system can internally open the entire branch of entities up to the
root level and keep instances open in accordance with existing references to them.

Once the last reference to an entity is closed, the entity is removed from the cache.

http://en.wikipedia.org/wiki/Hierarchical_storage_management

The same is true of all its parent entities up to the root. The system thus provides a high level
of responsiveness for parallel entity openings or for obtaining data from these entities.

The entire information cache model is based on the concept of the “lazy” loading of information,
with the aim of ensuring a high level of responsiveness for the system. Information is

lazy-loaded at first instance it is accessed by a client or a service.

If entities are changed, the attribute values of the instance for viewing and the instance for
editing are loaded in memory only once and are duplicated only once the attribute value is
actually changed. This ensures minimum memory use by the cache.

All the cache algorithm concepts used contribute to a system that provides a powerful,

fast and effective system of access to saved content with minimum working memory use.

Query Engine
Importance: Mandatory

Description: This is an internal service with which users and the system itself search for
entities on the basis of their attribute indexing values. The system provides a grammatical
drive for switching the descriptive form of the query with the logical form, which is suitable for
the functioning of the subsystem for searching by attribute values. Grammatical rules enable
custom queries with various logical and priority operators.

The system also enables efficient searching by null attribute values.

It functions in connection with the Entity Collections Engine.

Entity Collections Engine

Importance: Critical

Description: This service enables the system to build entity collections on the basis of different
types of queries. Queries can be run and information about the collected entities can be
obtained from these ad hoc collections. This subsystem frequently uses client functions for
hierarchical views of the tree of archived entities (all sub-entities of a parent entity, etc.) and
the subsystem for searching by metadata, which builds ad hoc entity collections on the basis of
a specific query.

Because entity collections can be extensive and because multiple collections can be opened
simultaneously, using memaory resources available to the platform wisely is crucial to the

system integrity as it minimizes the effect on the amount of working memory used.

Security Engine

Importance: Critical

Description: Each time an entity is opened the system creates an instance for the entity

if the entity is not already present in the cache. If it is not already in the cache, the saved
access rules, which hierarchically enable a powerful system of determining access rights using
an access control list (ACL) model, are loaded in the instance.

Rights are inherited from parent entities, and can also be replaced with explicit rights.

The rules for calculating rights are separate from the core, which is why we speak of a
subsystem. The rules cannot be affected or managed, and only a limited range of settings -

which do not essentially affect information protection - is available.

Audit Logging Engine

Importance: Not required

Description: This subsystem enables the core to accurately log events on the archived content
in real time. These events are a part of the transactions of the operations themselves.

Audit logging on database layer can sometimes be dispersed, superfluous and hard to
interpret. IMiS®/ARChive Server implements its own audit logging sub system which tracks
every event that is triggered in a logically complete form, which is comprehensive, consolidated
and easy to interpret by authorized personnel.

The level of audit trail logging and the volume of captured data can be managed,

but any changes made to the settings will be logged in the audit trail.

If the user does not require the audit trail logging function, it can be disabled.

Certificate Store

Importance: Mandatory

Description: This subsystem enables services associated with digital certificates for the
system core. These are services used by the core and/or services linked to the core.

This service saves digital certificates from trustworthy digital certificate issuers and provides
logical support for verifying the validity of the different digital certificates the system
encounters in its work.

This subsystem provides functionalities for obtaining data about revoked digital certificates
using CRL and OSCP technologies. If the digital certificate store is empty and does not contain
digital certificates from trustworthy digital certificate issuers, its operations — checking the

validity of digital certificates - will not work.

Client Network Service

Importance: Critical

Description: This subsystem enables the system core to safely exchange information with its
clients. An asynchronous network model is used, which enables high permeability and efficient
operations of the service. Encryption of traffic between the service and clients protects the
transferred information from unauthorized access. The service enables connectivity via

multiple configurable TCP/IP ports and IPv4 and IPvB protocaols.

Content Conversion Service

Importance: Not required
Description: This subsystem enables automatic entity content conversion. It is based on the
principle of plug-ins that can be connected in sequences. Content is automatically converted

based on these sequences. For more information see chapter Automatic content conversion.

3.2 Attribute

In a world of enormous quantities of individual pieces of information that are interconnected or
unconnected, successful storage and efficient access urgently depend on logical descriptions
and links between this information.

This is accomplished using so-called metadata, which abstractly represents “information about
information” or “data about data” that is the subject of storage activities.

To establish and maintain, in the long term, the structure and normalization of individual
metadata, the metadata must be rounded out and rules must be written for them.

In IMiS®/ARChive Server this is achieved using the Attribute concept,

within which groups are assigned to an Entity.

For more information on entity see chapter Entity.

An attribute is the basic cell or container of metadata.

It assigns rules and a framework for the entry, maintenance and storage of the metadata
values of an entity. An attribute can also be described as a metadata model to which metadata
values must conform if we would like to save them in an attribute.

There are multiple types of attributes that primarily determine the type of value that can be
saved in the attribute. Attributes also contain control parameters that determine the range

and form of values and possibilities for searches by these values.

Once they have been determined, attributes can be linked to form so-called metadata or
attribute schemes which are merged to create entity templates (see chapter Templates).
Links between attributes and templates determine the control parameters specific to a link

between an attribute and an entity.

These include:
e Required.
e The possibility of containing multiple values.
e (Cannot be changed.
e The form and range of a value specific to an attribute in the framewaork of an entity type.

e (Other parameters.

An attribute is the key component and pillar of an effective electronic archive, as it describes
the saved information (content) in a normalized and enables users to access the content when
the body of content does not enable direct access. The reason for this can be the nature of the

content (an audio or visual record) or its extent.

3.2.1 Attribute types

Code: 1

Title: DirectoryEntity

Description: The identifier of an entity from the directory.

This data can be used to obtain the data of the entity from the directory.

Range of values: A registered entity in a directory.

References: /

0

ode: 2

itle: Bool
Description: A logical or bit value used in logical and Boolean algebra.
It signifies a true (positive) or false (negative) state.

Range of values: True, False or 1, O

Reference: http://en.wikipedia.org/wiki/Boolean data type

http://en.wikipedia.org/wiki/Boolean_data_type

Code: 3

Name: Int8
Description: A signed 8-bit integer.
Range of values: Min; -128, Max: 127.

Reference: http://en.wikipedia.org/wiki/Character %28computing%29

Code: 4

Name: UInt8

Description: An unsigned 8-bit integer.
Range of values: Min: O, Max: 255.

Reference: http://en.wikipedia.org/wiki/Byte

Code: 5

Name: Int16
Description: A signed 16-bit integer.
Range of values: Min: -32768, Max: 32767.

Reference: http://en.wikipedia.org/wiki/Integer %28computing%29#Short integer

Code: 6

Name: UInt16

Description: An unsigned 16-hit integer.
Range of values: Min: O, Max: 65535.

Reference: http://en.wikipedia.org/wiki/Integer %28computing%29#Short integer

Code: 7
Name: Int32

Description: A signed 32-bit integer.
Range of values: Min: -2147483648, Max: 2147483647.

Reference: http://en.wikipedia.org/wiki/Integer %28computing%29#Long integer

Code: 8

Name: UInt32

Description: An unsigned 32-hit integer.
Range of values: Min: O, Max: 4294967295.

Reference: http://en.wikipedia.org/wiki/Integer %28computing%29#Long integer

http://en.wikipedia.org/wiki/Character_%28computing%29
http://en.wikipedia.org/wiki/Byte
http://en.wikipedia.org/wiki/Integer_%28computing%29%23Short_integer
http://en.wikipedia.org/wiki/Integer_%28computing%29%23Short_integer
http://en.wikipedia.org/wiki/Integer_%28computing%29%23Long_integer
http://en.wikipedia.org/wiki/Integer_%28computing%29%23Long_integer

Code: 9
Name: Int64

Description: A signed 64-bit integer.
Range of values: Min: -9223372036854775808, Max: 9223372036854775807.

Reference: http://en.wikipedia.org/wiki/Integer %28computing%29#Long integer

Code: 10
Name: UInt64

Description: An unsigned 64-bit integer.
Range of values: Min: 0, Max: 18446744073709551615.

Reference: http://en.wikipedia.org/wiki/Integer %28computing%29#Long integer

Code: 11
Name: Int128

Description: A signed 128-bit integer.
Range of values: Min: -170141183460469231731687303715884105728,
Max: 170141183460469231731687303715884105727.

Reference: http://en.wikipedia.org/wiki/Integer %28computing%29#Long integer

Code: 12
Name: UInt128

Description: An unsigned 128-bit integer.
Range of values: Min: 0, Max: 340282366920938463463374607431768211455.

Reference: http://en.wikipedia.org/wiki/Integer %28computing%29#Long integer

Code: 13

Name: Double

Description: A real (rational) number in a floating point with a double precision.

It is not suitable for values where the absolute accuracy is required

(for example, bank transactions); in these cases the Decimal type is more suitable.

Range of values: / (dynamic range)

Reference: http://en.wikipedia.org/wiki/Double-precision floating-point format

http://en.wikipedia.org/wiki/Integer_%28computing%29%23Long_integer
http://en.wikipedia.org/wiki/Integer_%28computing%29%23Long_integer
http://en.wikipedia.org/wiki/Integer_%28computing%29%23Long_integer
http://en.wikipedia.org/wiki/Integer_%28computing%29%23Long_integer
http://en.wikipedia.org/wiki/Double-precision_floating-point_format

Code: 14

Name: Date

Description: A date value without a time component.
Range of values: Min: 1.1.8192 B.C., Max: 31.12.8191.
Reference: http://en.wikipedia.org/wiki/ISO 8601

Code: 15

Name: Time
Description: A time value without a date component.
Range of values: All 24 hours, accurate to 1 millisecond.

Reference: http://en.wikipedia.org/wiki/ISO 8601

Code: 16

Name: DateTime
Description: A date value with a time component.

Range of values: Min: 1.1.8192 B.C. with a time component (see Date + Time),

Max: 31.12.8191 with a time component (see Date + Time).
Reference: http://en.wikipedia.org/wiki/ISO 8601

Code: 17

Name: StringMax
Description: An unlimited string of UTF-8 characters.

Range of values: / (limited by platform capacity)

Reference: http://en.wikipedia.org/wiki/String %28computer science%29

http://en.wikipedia.org/wiki/UTF-8

Code: 18

Name: String10
Description: A string of UTF-8 characters 10 bytes in length.

Range of values: 10 bytes of UTF-8 characters.

Reference: http://en.wikipedia.org/wiki/String %28computer science%29

http://en.wikipedia.org/wiki/UTF-8

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/UTF-8

Code: 19
Name: String20

Description: A string of UTF-8 characters 20 bytes in length.

Range of values: 20 bytes of UTF-8 characters.

Reference: http://en.wikipedia.org/wiki/String %28computer science%29

http://en.wikipedia.org/wiki/UTF-8

Code: 20

Name: String30

Description: A string of UTF-8 characters 30 bytes in length.
Range of values: 30 bytes of UTF-8 characters.

Reference: http://en.wikipedia.org/wiki/String %28computer science%29

http://en.wikipedia.org/wiki/UTF-8

Code: 21

Name: String40

Description: A string of UTF-8 characters 40 bytes in length.
Range of values: 40 bytes of UTF-8 characters.

Reference: http://en.wikipedia.org/wiki/String %28computer science%29

http://en.wikipedia.org/wiki/UTF-8

Code: 22
Name: Stringb0
Description: A string of UTF-8 characters 50 bytes in length.

Range of values: 50 bytes of UTF-8 characters.

Reference: http://en.wikipedia.org/wiki/String %28computer science%29

http://en.wikipedia.org/wiki/UTF-8

Code: 23

Name: String100

Description: A string of UTF-8 characters 100 bytes in length.
Range of values: 100 bytes of UTF-8 characters.

Reference: http://en.wikipedia.org/wiki/String %28computer science%29

http://en.wikipedia.org/wiki/UTF-8

http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/UTF-8

Code: 24

Name: String200

Description: A string of UTF-8 characters 200 bytes in length.
Range of values: 200 bytes of UTF-8 characters.

Reference: http://en.wikipedia.org/wiki/String %28computer science%29

http://en.wikipedia.org/wiki/UTF-8

Code: 25
Name: EntityReference
Description: An entity identifier on the server.

Range of values: All created entities on the server.

Reference: /

Code: 31
Name: Decimall

Description: A signed real (rational) number accurate to 1 decimal point.

Range of values: Min: -8223372036854775807.8, Max: 9223372036854775808.7.

Reference: http://en.wikipedia.org/wiki/Decimal

Code: 32
Name: Decimal2

Description: A signed real (rational)l number accurate to 2 decimal points.

Range of values: Min: -822337203685477580.78, Max: 8922337203685477580.87.

Reference: http://en.wikipedia.org/wiki/Decimal

Code: 33
Name: Decimal3
Description: A signed real (rational)l number accurate to 3 decimal points.

Range of values: Min: -82233720368547758.078, Max: 92233720368547758.087.

Reference: http://en.wikipedia.org/wiki/Decimal

http://en.wikipedia.org/wiki/String_%28computer_science%29
http://en.wikipedia.org/wiki/UTF-8
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Decimal

Code: 34
Name: Decimal4
Description: A signed real (rational) number accurate to 4 decimal points.

Range of values: Min: -8223372036854775.8078, Max: 9223372036854775.8087.

Reference: http://en.wikipedia.org/wiki/Decimal

Code: 35
Name: Decimal5
Description: A signed real (rational) number accurate to 5 decimal points.

Range of values: Min: -922337203685477.58078, Max: 922337203685477.58087.

Reference: http://en.wikipedia.org/wiki/Decimal

Code: 36
Name: DecimalB
Description: A signed real (rational) number accurate to 6 decimal points.

Range of values: Min: -92233720368547.758078, Max: 92233720368547.758087.

Reference: http://en.wikipedia.org/wiki/Decimal

Code: 37
Name: Decimal?/
Description: A signed real (rational) number accurate to 7 decimal points.

Range of values: Min: -8223372036854.7758078, Max: 9223372036854.7758087.

Reference: http://en.wikipedia.org/wiki/Decimal

Code: 38
Name: Decimal8
Description: A signed real (rational) number accurate to 8 decimal points.

Range of values: Min: -922337203685.47758078, Max: 922337203685.47758087.

Reference: http://en.wikipedia.org/wiki/Decimal

Code: 39
Name: Decimal9

Description: A signed real (rational) number accurate to 9 decimal points.

Range of values: Min: -82233720368.547758078, Max: 92233720368.547758087.

Reference: http://en.wikipedia.org/wiki/Decimal

http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Decimal

Code: 40
Name: Decimal10
Description: A signed real (rational)l number accurate to 10 decimal points.

Range of values: Min: -8223372036.8547758078, Max: 9223372036.8547758087.

Reference: http://en.wikipedia.org/wiki/Decimal

Code: 41

Name: Binary

Description: An unlimited bit string with data about the content type (MIME);
it is capable of transmitting the size of the saved string.

Range of values: / (limited by platform capacity)

Reference: http://en.wikipedia.org/wiki/Bitstring

http://en.wikipedia.org/wiki/Internet media type

Code: 42

Name: File

Description: An attribute capable of storing files with: data about the content type (MIME),
a description, time of creation, last changed and last accessed.

It is also capable of transmitting the size of the saved string.

Range of values: Content up to 9223372036854775807 bytes in size,

description with a size of up to 4096 UTF-8 characters.

Reference: http://en.wikipedia.org/wiki/Internet media type

3.2.2 Parameters
Besides its type, an attribute is described by the following data:
¢ »Name«: a name, a required unigue string of UTF-8 characters up to 256 bytes of UTF-8
characters in length.
e »lLabel«: an attribute label, an optional string of UTF-8 characters, up to 256 bytes in
length.
e »Description«: a description, an optional string of UTF-8 characters up to 512 bytes of

UTF-8 characters in length.

http://en.wikipedia.org/wiki/Decimal
http://en.wikipedia.org/wiki/Bitstring
http://en.wikipedia.org/wiki/Internet_media_type
http://en.wikipedia.org/wiki/Internet_media_type

e »Validation expressiong, a string of UTF-8 characters that represent a regular
expression with which the new or changed values of the attribute are checked.
For additional information on syntax and rules see:

http://en.wikipedia.org/wiki/Regular expression.

e »Parameters«: additional attribute parameters which further constrain values assigned

to the attribute: “Searchable”, “Unique” and “PickList”.

»Searchable«
The values of this attribute become a part of an index which can be used with the search
function to search for entities with assigned values. Conversely, attributes not marked as

“Searchable” cannot be searched for using the search function.

On the basis of this fact, when entering settings for IMiS®/ARChive Server and its attributes,
the user must decide whether or not to assign this parameter to an attribute.

Once the attribute receives a value, this parameter can no longer be changed.

This parameter can essentially affect the operations and performance of the server.

The data is saved in search trees, which can become large and slow. On the other hand,
attributes with the “Non-searchable” value are only saved, meaning that their quantity does

not essentially affect server performance.

»Unigue«

Each attribute value is unique throughout the entire archive. Select this parameter

if you would like to prevent a value from being entered for an attribute that is already specified
by a different entity. If this rule is violated, the system will prevent the entity from being saved.
It is also possible to work with the parameter even after an attribute has already been
assigned values. Or it can be turned off. As long as an attribute does not have assigned values,

this parameter can be managed freely.

»PickList«

Attribute values are determined in advance, which is why manual entry outside the list of
allowed values is not possible. The list of allowable attributes is made when configuring
IMiS®/ARChive Server.

Once the list has been assigned values, additional values can simply be added.

As long as no attribute has a value, the value can be removed from the list.

http://en.wikipedia.org/wiki/Regular_expression

Additionally, for each value the following can be specified:
e Attributes:
- “alias”: a synonym, a user-friendly value name that clients can use to select values
- "alias.xx_YY”: a translated synonym, a user-friendly value translated into a field identified
with the identifier xx_YY; clients can use this value to select values when a client is
working in the field settings of xx_YY; field identifiers of xx_YY are structured in

accordance with the ISO 639 standard (http://en.wikipedia.org/wiki/ISO 639)

- “"default”: The default value of an attribute in the case of new entities; clients can use

this attribute property in user interfaces to display the default values of an attribute
e (Conditions: Lists the conditions under which a certain value is allowed; conditional

syntax for pairs can be used, or only the value itself if you would like it to apply to an

attribute for which conditions have been prescribed.

Examples:

o “T{default,alias="Opened” alias.s/ 5/="Odprto’} — The attribute value “1” is identified by the alias
“Opened” and translated into Slovenian as “Odprto’. It is default for new entities. Conditions for
when it is available are not listed.

o 'PHalias="Closed" alias.sl 5I="Zaprto"}:["":"1"] — The attribute value "2” is identified by the alias
“Closed” and translated into Slovenian as "Zaprto’,

It is available on the condition that the attribute does not have a value (a new entity)

orits valueis 1.

3.2.3 Links to templates

An attribute is not independently capable of storing metadata; it is only the basis or source of
the data container. The metadata value container is ultimately determined by the link
established between the attribute and a template. Simply put, templates are settings on the
basis of which entities are created in the archive.

For more information see chapter Templates.

In connection with an attribute, it is also necessary to be familiar with the concept of how
templates work. Inheritance significantly affects an understanding of the metadata schemes of
the executed templates. The link between a template and an attribute is the basic element of

an entity’s metadata scheme.

http://en.wikipedia.org/wiki/ISO_639

IMiS®/ARChive Server Manual

Version 9.9.1810

It determines the so-called contract, that is, all parameters and restrictions that all metadata

values entered for an attribute must adhere to, if we would like to enter them in the attribute

that contains them.

"Attributes" inventory
(flat list of attributes, reusable in

unlimited number of templates)

Title: DateReceived
Description: The date the document arrived at

the processing department i
Type: Date
Properties: Indexed (Searchable)
Title: DateSent
Description: The date the document was
dispatched to the receiver
Type: Date
Properties: Indexed (Searchable)
Title: Sender
Description: The Person responsible for
ispatching the document
Type: String200
Properties: Indexed (Searchable)

d

Title: Description

Description: A short document description
Type: StringMax

Properties: /

Title: Owner

Description: Identifier of a person responsible
for processing the document

Type: String50

Properties: Indexed (Searchable)

Title: Keywords

Description: The list of content keywords
Type: String200

Properties: /

Title: Identifier
Description: Unique Document identifier
Type: String100
Properties: Unique, Indexed (Searchable)

Attribute —
Template binds
(each can define
different constraints
even for the same
attribute)

N

Required /
/T>
\ /

7
(
\

\\

/ N\
b

Required
IncludelnAlP

-

/ Public %,

ReadOnly
\nnludelnAlP/

Required
IncludelnAlP

&

Template
(aggregates attribute schema from its
parent template and adds explicitly bound

attributes with their constraints)

ReceivedDocument template with

Entities of type
"ReceivedDocument”
(created based on

attribute schema: Identifier,
Keywords, Owner, Description,
DateReceived, DateSent

Title: ReceivedDocument
Description: Document received
by the processing department
via regular mail
\ Base: GenericDocument

A

Title: SentDocument

<Received document 1>

> (Entity)

<Received document 2>
(Entity)

—>

<Received document 3>
(Entity)

<Received document n>

Description: Document \
dispatched to an external entity

Base: GenericDocument

a

_{

b

Title: GenericDocument
Description: Generic document
Base: GenericEntity

Fs

/ Title: GenericEntity .
Description: Generic archived

Public

' Multivalue />_

Public
Required
ReadOnly

IncludelnAlP

content entity
Base: /

(Entity)

[LLL

Entities of type
"SentDocument”
(created based on
SentDocument template with
attribute schema: Identifier,
Keywords, Owner, Description,

DateSent, Sender

<Sent document 1>
(Entity)

i

<Sent document 2>
(Entity)

|

<Sent document 3>
(Entity)

[

<Sent document n>
(Entity)

Image 2: Logical links between attributes, templates and entities

This model enables the same attribute to be reused in different templates, and it is also

possible to determine certain attribute parameters on the level of the link.

These parameters are:

»Validation expression«: A string of UTF-8 characters that represent a regular

expression used to check new or changed attribute values; for additional information on

syntax and rules see: http://en.wikipedia.org/wiki/Regular expression.

This expression replaces the expression set on the level of the attribute. Checking by an

expression of an attribute is therefore replaced by checking by an expression on the level

of the link between the attribute and the template.

2018 © Imaging Systems, Inc., All rights reserved.

34

http://en.wikipedia.org/wiki/Regular_expression

e »Sequence«: The sequence of the attribute in the metadata scheme of the template.
This is the sequence of the attribute in the scheme. The following rules must be taken
into account:

1. The scheme of each parent template has its own sequential order which does not
depend on the parent template and/or any templates created from it.

2. The attributes of the root parent template scheme are initially consolidated attribute
schemes.

3. The attributes of the scheme of the executed template from which entities are
created are ultimately the consolidated attribute schemes of this template.

e »PickList values«: when necessary, a range of predefined attribute values, which are
determined globally, can be used. The list is saved in the context of the link between the
attribute and the template. Manual entry of values outside the list of allowed values is not
possible. The list of allowed values is determined when entering settings for the product.
Values can only be added to the list once its values have been defined.

As long as they do not have a defined valuge, values can also be removed.
For more information see Options, “PickList”.
e »Parameters«: additional attribute parameters that further define its assigned values:

“Searchable”, “Unique” and “PickList”.

»Public«

The public attribute. The values of this attribute in the framework of an entity are of a public
nature and are also accessible to directory entities (users, groups) who otherwise do not have
access rights for the entity. This parameter can be managed throughout the entire life cycle of
the attribute and/or the template to which the attribute is linked. It is used the first time an

entity is opened by a user following the changed setting.

»Multivalue«

An attribute that can contain multiple values. The attribute can be assigned multiple values in
the framework of a single entity. If this parameter is not specified, an attribute can be assigned
exactly one value (or no value) in the framework of a single entity. This parameter can be
managed throughout the entire life cycle of the attribute and/or the template to which the
attribute is linked until the first entity has been created on the basis of the template.

It can then be selected at any time. It cannot be turned off. It is used the first time an entity is

opened by a user following the changed setting.

»Required«

An attribute value must be present when the entity is saved. Server will deny the save if the
saver of the entity does not specify at least one valid value for the attribute.

This parameter can be managed throughout the entire life cycle of the attribute and/or the
template to which the attribute is linked until the first entity has been created on the basis of
the template. It can then be selected at any time. It cannot be turned off.

It is used the first time an entity is opened by a user following the changed setting.

nReadOnly«

The parameter »ReadOnly« indicates whether an attribute value can be changed or not.
Valid parameter values are the following:
¢ »0« (ReadOnlyDisabled): the attribute value can be changed at any time.
¢ »1« (ReadOnlyAfterCreate): the attribute value cannot be changed after saving the
document for the first time.
o »2« (ReadOnlyAfterCheckin): the attribute value cannot be changed after checking in the
draft document.
o »3« (ReadOnlyAlways): the attribute value cannot be changed.
This parameter can be managed throughout the life cycle of the attribute and/or template
to which the attribute is connected. It is applied when the user opens the entity for the first

time after changing the settings.

»Inherited«

The values of the attribute inherit values from the parent hierarchy. If values are not explicitly
specified in an entity, they are inherited from the first parent entity for which values are
explicitly specified. Explicit values as a whole are above inherited values and have an effect on all

child entities.

Inheriting a value works on the principle of references. If the value of the inherited attribute is
changed in the parent of an entity, it immediately takes effect for all child entities for which
explicit values have not been defined.

Attribute values are only inherited if an entity and the entity directly above it have the attribute

in their attribute scheme.

This parameter can be managed throughout the entire life cycle of the attribute and/or the
template to which the attribute is linked. It is used the first time an entity is opened by a user

following the changed setting.

»AppendOnly«

The values of the attribute can only be appended to existing values. The client receives all
values from the server; when writing it only accepts new values, which it adds to already
existing ones.

This parameter can be managed throughout the entire life cycle of the attribute and/or the
template to which the attribute is linked. It is used the first time an entity is opened by a user

following the changed setting.

»nincludelnAlP«

The values of the attribute are a part of the archival information package (AIP). During the
procedure for determining the authenticity of the stored records, the values of attributes with
this parameter set become a part of the archive information package.

For more information see chapter AlP.

This parameter can be managed throughout the entire life cycle of the attribute and/or the
template to which the attribute is linked. The server uses this setting when a procedure for
determining the authenticity and integrity of the records is begun while the records are

stored.

nlsNonEmpty«

The value of this attribute can’t be empty. The definition of the empty value depends on the
type of attribute. Thus, the blank value for line »String10« is an empty string, and an empty
value for string »File« represents an empty file (file size O bytes). You can manage this
parameter throughout the entire lifecycle of the attribute and/or template. This applies to the
attribute that is connected until the first template-based entity is created. After that it is
possible to switch off the parameter at any time and never switch it on. This is taken into

account when the user opens the entity for the first time after changing the setting.

nVersionable«

Attribute values are versionable. Versioning means that an attribute for a specific document
version contains a set of values that may be the same or different from the set of values of
another version. This parameter can be managed throughout the life cycle of the attribute
and/or template to which the attribute is connected.

This applies until the first entity is created based on the template (the parameter can be
changed only on those templates from which documents can be created). This parameter is

not compatible with the »Required« and »Unique« parameters.

Restrictions:
When configuring attributes in templates with already existing entities, the following restrictions apply:
e When adding a new attribute, the property »Required« can't be set on »Truec.
If it is set on »Falses, it leads to inconsistency with all existing entities as these can't have
values for the new attribute.
. When changing an existing attribute in a template, the following restrictions apply:
- achange of attribute's property »Multivalue« from » True« to »False« is not allowed because
of inconsistency with all the existing entities that have multiple values set for this attribute;
- achange of attribute’s property »Required« from »False« to »True« is not allowed because
of inconsistency with all the existing entities that don't have a value for this attribute,
- achange of attribute’s property »inherited« from » True« to »False« is not allowed because
of inconsistency with all the existing entities that don't have an explicit value for this attribute.
« Deleting an attribute from a template that has existing entities is not allowed.

All other combinations are allowed,

3.2.4 Naming

Every attribute must be named using a custom unique string of UTF-8 characters up to 256
UTF-8 characters in length. All characters are allowed, but the following restrictions should be

noted:

e An attribute name cannot be blank.

o The prefixes (hamespaces) “int.”, “sys:”, “imp:”, and “trf:"
are reserved and their use is not allowed; attempts to create an attribute with these
letter combinations will be rejected.

e Attribute names should make sense and be short.

e Prefixes or namespaces separated from the name with a “:” sign can be used; nested

prefixes are allowed (for example “global:accounting:InvoiceNo”).

e The system does not have rules for naming attributes, but it is
wise to assign names on the basis on an internal rulebook for work with IMiS®/ARChive

Server.

It is also smart to determine an attribute description, that is, an optional string of UTF-8
characters up to 512 characters in length that should contain a logical description of what the
attribute represents and which values are allowed if restrictions exist.

This data is transferred to clients that can display it in the user interface.

Localization on the level of the server is not supported.

Strings of characters can however be used as constants, which are then translated in

accordance with the regional settings of clients.

3.2.5 System attributes

The operations of the archive system are greatly affected by certain attributes and their
values.

These attributes are called “System attributes”; unlike attributes with settings,

they are defined in the system in advance and their properties cannot be changed.

The reason for this is that their presence/absence, values and properties affect server
operations, entity life cycles and processes for record storage.

System attributes are built into IMiS®/ARChive Server and cannot be managed.

They are linked to system templates from which the templates used to create entities are
taken. Created entities therefore implicitly receive them in their attribute schemes.

They therefore affect entity life cycles and the presence of system metadata.

The values of some system attributes are defined by the server in the processes through
which it creates, edits and saves entities. For some system attributes, the user must enter a
value(s), as only in this way is it possible to successfully manage the entity life cycle.

System attributes are described in detail below.

nsys:Externallds«

Type: String100

Properties: Unique, Searchable, Public, MultiValue, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties;
one entity can contain up to 65536 external identifiers.

Use: Class, Folder, Document, Review process.

Description: Unique external entity identifiers; they are used as data for access to the entity
(opening); external entity is responsible for the uniqueness of the identifier, and saving is not

allowed if the same external identifier has already been assigned to another entity.

nsys:Title«

Type: String200

Properties: Searchable, Public, Required (except references), IsNonEmpty (except references),
ReadOnlyAlways (copies of retention policies and deleted entities onlyl.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Class, Folder, Document, Document in the review process, Retention policies, Retention
and disposition process, Copy of retention policy, Disposition hold, Container of system entities,
References.

Description: The required name (title) of the entity it describes; this can be changed
throughout the entire entity life cycle. This attribute does not affect the business logic of the

server in operations with entities. It is only a container of information.

nsys:Description«

Type: String200

Properties: Public, ReadOnlyAlways (deleted entities and copies of retention policies onlyl.
Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document, Review process, Retention policies, Retention and disposition
process, Copy of retention policy, Disposition hold, Container of system entities.

Description: A non-required short description of the entity; this can be changed throughout
the entire entity life cycle.

If an entity is deleted, it becomes required; this attribute does not affect the business logic of

the server in operations with entities. It is only a container of information.

nsys:Content«

Type: File

Properties: Public [review process and copies of retention policies only), MultiValue,
IncludelnAlIP, Searchable, ReadOnlyAlways (copies of retention policies only).

Restrictions: There are no restrictions except those pertaining to the type or properties;

one entity can contain up to 65536 values.

Use: Document, Document in review process, Retention politics, Retention and disposition
process, Copy of retention policy.

Description: This attribute represents the content container and is able to save the content’s
descriptive structures. This attribute is included in the group of attributes that are indexed;

the specific feature of a File attribute is that it represents the Full Text Index.

If a system for ensuring authenticity and integrity for the duration of record storage is in place,
the hashes of the values from this container become a part of the Archival Information Package
(AIP). It can be changed throughout the entire entity life cycle. This attribute does not affect

the business logic of the server in operations with entities; it is only a container of information.

nsys:Keywords«

Type: String30

Properties: Searchable, Public, MultiValug, IsNotEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties;
one entity can contain up to 65536 values.

Use: Class, Folder, Document.

Description: Non-required keywords that define the entity. It can be changed throughout the
entire entity life cycle. This attribute does not affect the business logic of the server in

operations with entities; it is only a container of information.

nsys:SecurityClass«
Type: UInt32
Properties: Searchable, Public, ReadOnly, Inherited, PickList, IsNonEmpty.
Restrictions: Valid values (predefined):
e 1, alias “Unclassified”. A degree of confidentiality has not been defined for the entity.
e 2 alias “Restricted”. The entity is internal in nature; only those users with a security
class of “Restricted” or higher may access it.
e 3, alias “Confidential”: The entity is classified; only those users with a security class of
“Confidential” or higher may access it.
e 4, alias “Secret”. The entity is secret; only those users with a security class of “Secret”
or higher may access it.
e 5 alias “Top Secret”: The entity is top secret; only those users with a security class of

“Top Secret” or higher may access it.

Security classes can be set in accordance with the archive user’s rulebooks for archiving.

The value O is invalid because it is reserved and internal, which is why it cannot be entered as a
valid value.

Use: Class, Folder, Document.

Description: This system attribute restricts access to the entity. An entity to which a user
with a particular security class does not have access will be hidden for that user.

The user cannot confirm its existence or perform any activity through which it would be
possible to confirm its existence. Besides reading its attributes, opening, deleting, moving, etc.,
this also holds for creating entities under it.

The security class value is inherited by child entities if it has not been defined. Child entities can
be assigned their own security class, but only up to the level of the parent entity; in other

words, their security class can be the same as or lower than that of the parent entity.

nsys:Status«
Type: UInt32

Properties: Public, Required, ReadOnlyAfterCreate, IsNonEmpty, Searchable, PickList, Inherited
[Inherited property does not apply in the case of Review processl.
Restrictions: Valid values:

e 1, alias “Opened”; users are allowed to edit the entity and to create child entities beneath

it.

o 2, alias “Closed”; users are not allowed to change the entity or to create child entities.
The presence of this attribute is required in the class, in the document beneath the class and
in folders.

Use: Class, Folder, Document, Retention and disposition process.

Description: This attribute represents the status of the entity. This status is reflected in the
processes that are allowed or prohibited for the entity. An entity with open status can be
edited and freely managed. The access level is determined by access rights.

Once an entity is assigned closed status, editing is no longer possible, regardless of access
rights. If a service for ensuring authenticity and integrity for the duration of storage is enabled,
closing an entity sends the signal for beginning the process for ensuring authenticity for the
concrete entity and for any child entities.

For more information see chapter Life Cycle.

nsys:Creator«
Type: DirectoryEntity

Properties: Searchable, Public, Required, ReadOnly, IsNonEmpty Inherited (in the case of
Container of system entities).

Restrictions: This value is defined by the server and cannot be changed.

This value always represents a value from the directory.

Use: Class, Folder, Document, Document in Review process, Retention politics, Retention and
disposition process, Copy of retention policy, Disposition hold, Container of system entities.
Description: This value represents a directory entity - the user who created the entity.

This data cannot be edited and is determined when an entity is created by the server.

This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

nsys:0wner«
Type: DirectoryEntity

Properties: Searchable, Public, IsNonEmpty.

Restrictions: The allowed values are identifiers of registered entities from the directory.

Use: Class, Folder, Document, Document in Review process, Retention and disposition process.
Description: This value represents a directory entity - the user or group responsible for the
entity (owner). This can be edited throughout the entire entity life cycle.

This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information. One exception is the »Check in« operation, which verifies

whether the user executing the action is present in this attribute.

nsys:Significance«

Type: UInt32

Properties: Searchable, Public, Inherited, PickList, IsNonEmpty.
Restrictions: Valid values:

e 1, alias “Vital”: An entity that is vitally important for the archive owner. Deleting the entity
through an administrator request or in the retention and disposition process is
prohibited. The entity is optionally under a special secure archiving regime.

e 2, alias “Permanent”: Deleting the entity through an administrator request or in the
retention and disposition process is prohibited. This is just a warning.

The administrator can take it into account or ignore it.

e 3, alias “Retain”: This is a warning for the person who is performing retention and
disposition process. The disposition process should not be carried out on an entity with
this status.

e 4, alias “Delete”: A recommendation telling the administrator to delete the entity outside
of the retention and disposition process. This recommendation can be issued each time
someone edits the entity. This is usually how entities that have been entered incorrectly
are deleted. The deleting can also be requested by the document owner (personal data,
etc.)

Use: Class, Folder, Document.

Description: This attribute represents the importance of the document to the archive owner.

nsys:0Opened«
Type: DateTime

Properties: Searchable, Public, ReadOnly, IsNonEmpty.

Restrictions: This value is defined by the server and cannot be changed. It is always present
with the “sys:Status” system attribute.

Use: Class, Folder, Document, Retention and disposition process.

Description: This value represents the date and time when the “sys:Status” attribute of an
entity received the “Opened” value (chapter “sys:Status”).

This data cannot be edited and is determined by the server. This attribute does not affect the

business logic of the server in operations with entities; it is only a container of information.

nsys:Closed«
Type: DateTime

Properties: Searchable, Public, ReadOnly, Inherited, IsNonEmpty Inherited (property does not
apply in the Review process).

Restrictions: This value is defined by the server and cannot be changed. It is always present
with the “sys:Status” system attribute.

Use: Class, Folder, Document, Retention and disposition process.

Description: This value represents the date and time when the “sys:Status” attribute of an
entity received the “Closed” value. (chapter “sys:Status”).

This data cannot be edited and is determined by the server. This attribute does not affect the

business logic of the server in operations with entities; it is only a container of information.

nsys:CommitLog«

Type: StringMax

Properties: ReadOnlyAlways, MultiValue, AppendQOnly, IncludelnAlP, IsNonEmpty.

Restrictions: This value is defined by the server and cannot be changed.

Use: Class, Folder, Document, Document in Review process, Retention policies, Retention and
disposition process, Copy of retention palicy.

Description: This value represents an event log of automatic checking actions performed by
the server when an entity is saved. Besides a text log, it also contains the digital signatures of
the archived content, digital certificates, whole chains of certificates that issued the certificate
with which the digital signature was created and current lists of revoked certificates from all

issuers of these certificates. This data cannot be edited and is determined by the server.

The data in this attribute is included in the Archival Information Package (AIP) and is subject to
long-term record storage in the authenticity verification process.
This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

»sys:move:Reason«

Type: String200

Properties: Searchable, MultiValue, ReadOnlyAlways, AppendOnly, IsNonEmpty.
Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document.

Description: These values represent reasons for moving (reclassifying) an entity.

It is a value set by the user when an entity is moved in the classification hierarchy of the
records. This value can be linked with the “sys:move:Agent”, “sys:move:DateTime” and
“sys:move:ClassificationCode” attributes to provide more complete information about the
movement of an entity in the record classification hierarchy.

This value is entered in the metadata of the entity that is moved; it is not entered in its child
entities. For more information see chapter Life Cycle.

This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

nsys:move:Agent«

Type: DirectoryEntity

Properties: Searchable, MultiValue, ReadOnlyAlways, AppendOnly, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.
These values can represent the identifiers of registered entities from the directory.

Use: Class, Folder, Document.

Description: These values represent directory entities (users) who have moved (reclassified)
an entity. This value is automatically set by the server using the user session or the log-in data
of the user who moved the entity.

This value can be linked with the “sys:move:Reason”, “sys:move:DateTime” and

“sys:move:ClassificationCode” attributes to provide more complete information about the

movement of an entity in the record classification hierarchy.

This value is entered in the metadata of the entity that is moved; it is not entered in its child
entities. For more information see chapter Life Cycle. This attribute does not affect the

business logic of the server in operations with entities; it is only a container of information.

nsys:move:DataTime«

Type: DateTime

Properties: Searchable, MultiValue, ReadOnlyAlways, AppendOnly, IsNonEmpty.
Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document.

Description: This value represents the date and time when an entity was moved (reclassified).
This value is automatically set by the server.

This value can be linked with the “sys:move:Reason”, “sys:move:Agent” and
“sys:move:ClassificationCode” attributes to provide more complete information about the
movement of an entity in the record classification hierarchy. This value is entered in the
metadata of the entity that is moved; it is not entered in its child entities.

For more information see chapter Life Cycle. This attribute does not affect the business logic of

the server in operations with entities; it is only a container of information.

nsys:move:ClassificationCode«

Type: String200

Properties: Searchable, MultiValue, ReadOnlyAlways, AppendOnly, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Class, Folder, Document.

Description: These values represent a classification code that is used every time the entity is
moved (reclassified). This value is automatically set by the server.

This value can be linked with the “sys:move:Reason”, “sys:move:Agent” and “sys:move:DateTime”
attributes to provide more complete information about the movement of an entity in the
record classification hierarchy. This value is entered in the metadata of the entity that is
moved; it is not entered in its child entities.

For more information see chapter Life Cycle. This attribute does not affect the business logic of

the server in operations with entities; it is only a container of information.

nsys:del:Reason«

Type: String200

Properties: Searchable, Public, Required, ReadOnlyAlways, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document.

Description: This value represents the reason for dispositioning or deleting an entity.
This value is set by the user when an entity is deleted. In the case of disposition, it is
transferred from the review process. For more information see chapter Life Cycle.

This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

nsys:del:Agent«
Type: DirectoryEntity

Properties: Searchable, Public, Required, ReadOnlyAlways, IsNonEmpty.
Restrictions: There are no restrictions except those pertaining to the type or properties.
These values always represent the identifiers of registered entities from the directory.

Use: Class, Folder, Document.

Description: This value represents the directory entity (user) who performed disposition or
delete of the entity. This value is automatically set by the server using the user session or the
log-in data of the user who performed the action. For more information see chapter Life Cycle.
This attribute does not affect the business logic of the server in operations with entities; it is

only a container of information.

nsys:del:DateTime«
Type: DateTime

Properties: Searchable, Public, Required, ReadOnlyAlways, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document

Description: This value represents the date and time an entity was disposed or deleted.

This value is automatically set by the server. For more information see chapter Life Cycle.
This attribute does not affect the business logic of the server in operations with entities; it is

only a container of information.

nsys:del:ClassificationCode«

Type: String200

Properties: Searchable, Public, Required, ReadOnlyAlways, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Class, Folder, Document.

Description: This value represents the classification code of the entity at the time of dispaosition
or deletion. This value is automatically captured by the server. For more information see
chapter Life Cycle. This attribute does not affect the business logic of the server in operations

with entities; it is only a container of information.

nsys:del:Reference«

Type: String200

Properties: Searchable, Public, ReadOnlyAlways

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Class, Folder, Document.

Description: The value represents a reference to the transferred entity. This value is set by the
user after successfully transferring the entity in the review process.

This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

nsys:scc:Reason«

Type: String200

Properties: Searchable, MultiValue, ReadOnlyAlways, AppendOnly, IsNonEmpty.
Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document.

Description: These values represent reasons for changing the security class of an entity.
This value is set by the user when the security class of an entity is changed.

This value can be used in conjunction with the “sys:scc:Agent”, “sys:scc:DateTime”,
“sys:scc: From” and “sys:scc:To” attributes to provide more complete information about a
change made to the security class of an entity. This value is entered in the metadata of the
entity whose security class is changed; it is not entered in its child entities. This attribute does

not affect the business logic of the server in operations with entities; it is only a container of

information.

nsys:scc:Agent«

Type: DirectoryEntity

Properties: Searchable, MultiValue, ReadOnlyAlways, AppendOnly, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.
These values always represent the identifiers of registered entities from the directory.

Use: Class, Folders, Document.

Description: These values represent directory entities (users) who change the security class of
an entity. This value is automatically set by the server using the user session or the log-in data
of the user who changed the security class of the entity. This value can be used in conjunction
with the “sys:scc: Reason”, “sys:scc:DateTime”, “sys:scc: From” and “sys:scc:To” attributes to
provide more complete information about a change made to the security class of an entity.
This value is entered in the metadata of the entity whose security class is changed; it is not

entered in its child entities. This attribute does not affect the business logic of the server in

operations with entities; it is only a container of information.

nsys:scc: DateTime«

Type: DateTime
Properties: Searchable, MultiValue, ReadOnlyAlways, AppendOnly, IsNonEmpty.
Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Class, Folder, Document.

Description: These values represent the data and time a change was made to the security
class of an entity. This value is automatically set by the server. This value can be used in
conjunction with the “sys:scc: Reason”, “sys:scc: Agent”, “sys:scc: From” and “sys:scc: To”
attributes to provide more complete information about a change made to the security class of
an entity. This value is entered in the metadata of the entity whose security class is changed;
it is not entered in its child entities. This attribute does not affect the business logic of the

server in operations with entities; it is only a container of information.

nsys:scc: Fromu

Type: UInt32

Properties: Searchable, MultiValue, ReadOnlyAlways, AppendOnly, PickList.

Restrictions: These values must conform to all values of the "sys:SecurityClass” that existed at
any point following product installation. A value must also be defined for “0”, which is set in
advance as an alias for “Unspecified”. It can also be changed.

Use: Class, Folder, Document.

Description: These values represent the security class of an entity prior to the security class
change. This value is automatically set by the server using the value of the “sys:scc” attribute
prior to the change. This value can be used in conjunction with the “sys:scc:Reason”,

“sys:scc: DateTime”, “sys:scc: DateTime” and “sys:scc: To” attributes to provide more complete
information about a change made to the security class of an entity.

This value is entered in the metadata of the entity whose security class is changed; it is not

entered in its child entities. This attribute does not affect the business logic of the server in

operations with entities; it is only a container of information.

nsys:scc:To«
Type: UInt32

Properties: Searchable, MultiValue, ReadOnlyAlways, AppendOnly, PickList.

Restrictions: These values must conform to all values of the "sys:SecurityClass” attribute that
existed at any point following product installation. A value must also be defined for “0”,

which is set in advance as an alias for “Unspecified”. It can also be changed.

Use: Class, Folder, Document

Description: This value represents the security class once the security class has been
changed. It is automatically defined by the server using the value of the “sys:scc” attribute
following a change. This value can be used in conjunction with the “sys:scc:Reason’,
“sys:scc:Agent”, “sys:scc: DateTime” and “sys:scc: From” attributes to provide more complete
information about a change made to the security class of an entity.

This value is entered in the metadata of the entity whose security class is changed; it is not

entered in its child entities. This attribute does not affect the business logic of the server in

operations with entities; it is only a container of information.

»sys:EntityReference«

Type: EntityReference

Properties: Public, Multivalue, Required, Searchable

Restrictions: There are no restrictions except for those deriving from type and properties.
Use: Reference (document).

Description: Values represent unique entity identifiers that are interconnected as references.

For more information see chapter References.

»sys:Category«

Type: String200

Properties: Public, Multivalue, Searchable

Restrictions: There are no restrictions except for those deriving from type and properties.
Use: Folder, Document.

Description: The attribute values represent categories into which the entities can be

categorized. For more information see chapter Categories.

3.2.6 Email document attributes
Some attributes and templates for email archiving are predefined in IMiS®/ARChive Server.
They are intended for storing metadata about email. These attributes are predefined on the

server and their properties cannot be managed.

nsys:eml:Messageld«
Type: String100
Properties: Searchable, ReadOnlyAfterCreate.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Document.

Description: This value represents the unique identifier of a message specified by the mail
server upon delivery. The value is provided by the client, and is usually extracted from the email
itself, although the accuracy of the information ultimately depends on the client.

The value represents the value from the “message-id” attribute of the email, in line with the
RFC 2822 specification. This attribute does not affect the business logic of the server in

operations with entities; it is only a container of information.

nsys:eml:Date«
Type: DateTime

Properties: Searchable, Required, ReadOnlyAfterCreate, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Document.

Description: This value represents the date and time the message was sent. In line with the
specifications, this is the moment at which the sender decided that the message was suitable
for sending and began the process for sending the message. The value is provided by the client,
and is usually extracted from the email itself, although the accuracy of the information
ultimately depends on the client. The value represents the value from the “orig-date” attribute
of the email, in line with the RFC 2822 specification. This attribute does not affect the business

logic of the server in operations with entities; it is only a container of information.

nsys:eml:From«

Type: String200

Properties: Searchable, Required, ReadOnlyAfterCreate, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Document.

Description: This value represents the valid email address of the sender of the email.

The value is provided by the client, and is usually extracted from the email itself, although the
accuracy of the information ultimately depends on the client. The value represents the value
from the “from” attribute of the email, in line with the RFC 2822 specification.

This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

nsys:eml:To«

Type: String200

Properties: Searchable, MultiValue, ReadOnlyAfterCreate, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Document.

Description: These values represent the valid email addresses of the recipients of the email.
The value is provided by the client, and is usually extracted from the email, although the
accuracy of the information ultimately depends on the client. The value represents the value
from the “to” attribute of the email, in line with the RFC 2822 specification. This attribute does
not affect the business logic of the server in operations with entities; it is only a container of

information.

nsys:eml:ToCC«

Type: String200

Properties: Searchable, MultiValue, ReadOnlyAfterCreate, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Document.

Description: These values represent the valid email addresses of the recipients in the cc field of
the email. The value is provided by the client, and is usually extracted from the email, although
the accuracy of the information ultimately depends on the client. The value represents the
value from the “cc” attribute of the email, in line with the RFC 2822 specification.

This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

nsys:eml:ToBCC«

Type: String200

Properties: Searchable, MultiValue, ReadOnlyAfterCreate, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Document.

Description: These values represent the valid email addresses of undisclosed recipients in the
bcc field of an email message. The value is provided by the client, and is usually extracted from
the email, although the accuracy of the information ultimately depends on the client.

The value represents the value from the “bcc” attribute of the email, in line with the RFC 2822
specification. This attribute does not affect the business logic of the server in operations with

entities; it is only a container of information.

nsys:eml:Subject«

Type: String200

Properties: Searchable, ReadOnlyAfterCreate.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Document.

Description: This value represents the title of the subject of the email. The value is provided by
the client, and is usually extracted from the email itself, although the accuracy of the
information ultimately depends on the client. The value represents the value from the “subject”
attribute of the email, in line with the RFC 2822 specification. This attribute does not affect the

business logic of the server in operations with entities; it is only a container of information.

nsys:eml:Priority«
Type: String20
Properties: Searchable, PickList, ReadOnlyAfterCreate, IsNonEmpty.
Restrictions: Valid values:
e Normal: The normal priority for delivery of the email (RFC 1327: “normal”).
e Low: The low priority for delivery of the email (RFC 1327: “non-urgent”).
e High: The high priority for delivery of the email (RFC 1327: “urgent”).
Use: Document.
Description: This value represents the delivery and processing priority of the email.
The value is provided by the client, and is usually extracted from the email itself, although the
accuracy of the information ultimately depends on the client.
This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

nsys:eml:Signed«

Type: Bool

Properties: Searchable, ReadOnlyAfterCreate, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Document.

Description: This value represents data on whether or not the email is digitally signed.

The value is provided by the client, and is usually extracted from the email itself, although the
accuracy of the information ultimately depends on the client.

This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

3.2.7 Physical record management attributes

If the digital archive is used to store digitalized content/records or even just the metadata of
such content/records, an efficient system of linking the digital portion of the records with their
physical counterparts must be established. For this purpaose, the system provides physical
record management attributes.

Maintaining current values in these attributes enables the simple, accurate and traceable
management of physical records. The custodians of the physical records are responsible for
maintaining these values. They do this by entering any borrows or transfers in and out of the
system. Each change of an attribute of a physical record is entered in the audit trail of the
digital entity describing the physical entity. Traceability is thus ensured.

All physical record management attributes are registered in the “prm” space in the title.
These attributes cannot be edited or assigned additional values. They are linked to system
templates from which the templates capable of archiving folders and/or documents are
derived. Except for their effect on the audit trail, physical record management attributes do
not affect the business logic of the server in its operations with entities.

They are only containers of information.

nsys:prm:ldentifier«

Type: String100

Properties: Searchable, IsNonEmpty, Inherited.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Folder, Document.

Description: This value represents the unique identifier of the physical record.

It uniformly designates the underlying physical record. This value can be edited throughout the
entire entity life cycle. It is set by the custodian of the physical record, who must be given the
ability to edit the entity’s metadata. This data is not required. This attribute does not affect the

business logic of the server in operations with entities; it is only a container of information.

nsys:prm:Description«

Type: String200
Properties: Searchable, Inherited.
Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Folder, Document.

Description: This value represents a description of the physical record. This data is used to
describe, to the greatest possible extent, the record and its format, physical appearance,
length, etc. This value can be edited throughout the entire entity life cycle. It is set by the
custodian of the physical record, who must be given the ability to edit the entity’s metadata.
This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

nsys:prm:Status«

Type: String20

Properties: Searchable, PickList, IsNonEmpty, Inherited.
Restrictions: Valid values:

o (CheckedIn: The physical record is in storage at its home location. This value denotes
when the physical record is stored at its “home location”, the location where it is
permanently stored. This data is changed if the record is loaned out or given to third
parties.

o (CheckedQOut: The physical record has been transferred to a third party and is NOT in
storage at its home location. This value denotes when a physical record has been
transferred or loaned out to a third party and is not in storage at its "home location”,
the location where it is permanently stored. This data is changed if the record is loaned
out or given to third parties. In this case, the metadata “sys:prm:CurrentlLocation”,
“sys:prm:Custodian” and “sys:prm:ReturnDue” should also be updated.

Use: Folder, Document.

Description: This value represents the status of the physical record based in its current
location or place of storage. It is set or edited if the record is loaned out or transferred to a
third party who is storing it outside its home location.

This value can be edited throughout the entire entity life cycle. It is set by the custodian of the
physical record, who must be given the abhility to edit the entity’'s metadata.

The date and time of the most recent change are stored in the “sys:prm:StatusChange”
metadata. This attribute does not affect the business logic of the server in operations with

entities; it is only a container of information.

nsys:prm:StatusChange«

Type: DateTime
Properties: Searchable, ReadOnlyAlways, IsNonEmpty, Inherited.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Folder, Document.

Description: This value represents the date and time of the most recent change of status of
the physical record; other changes are visible in the entity’s audit trail. This value is determined
automatically by the server when the value of the “sys:prm:Status” is edited and cannot be
edited by the user. This attribute does not affect the business logic of the server in operations

with entities; it is only a container of information.

nsys:prm:Homelocation«

Type: String100

Properties: Searchable, Inherited.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Folder, Document.

Description: This value represents a description of the home location of the physical record.
The exact “home location” where the records are permanently stored is entered in here
(address, room, shelf, file cabinet, etc.) This value can be edited throughout the entire entity life
cycle. It is set by the custodian of the physical record, who must be given the ability to edit the
entity’'s metadata. This attribute does not affect the business logic of the server in operations

with entities; it is only a container of information.

nsys:prm:CurrentLocation«

Type: String100

Properties: Searchable, Inherited.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Folder, Document.

Description: This value represents a description of the current location of the physical record
if this location is different than the home location of the records or if the records are currently
being borrowed by a third party.

The exact external location where the records are currently stored is entered here

(address, room, shelf, file cabinet, etc.)

In this case it is also advisable to change the value of the “sys:prm:Status” attribute to
“CheckedOut”. This value can be edited throughout the entire entity life cycle.

It is set by the custodian of the physical record, who must be given the ability to edit the
entity’'s metadata. This attribute does not affect the business logic of the server in operations

with entities; it is only a container of information.

nsys:prm:Custodian«

Type: String100

Properties: Searchable, Inherited.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Folder, Document.

Description: This value represents the |ID of the current custodian of the physical record.

If the records are stored at their home location (the “sys:prm:Status” attribute has the
“Checkeln” value), this will usually be the custodian of the physical records. If they are stored at
an external location (the “sys:prm:Status” attribute has the “CheckedOut” value), this is the
person who has been entrusted with the records for a limited period of time. This value can be
edited throughout the entire entity life cycle.

It is set by the custodian of the physical record, who must be given the ability to edit the
entity’'s metadata. This attribute does not affect the business logic of the server in operations

with entities; it is only a container of information.

nsys:prm:ReturnDue«

Type: Date

Properties: Searchable, Inherited.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Folder, Document.

Description: This value represents the date and time by which the physical record should be
returned to its home location. The temporary custodian of the records listed in the
“sys:prm:Custodian” attribute is responsible for returning the records. This value can be edited
throughout the entire entity life cycle. It is set by the custodian of the physical record,

who must be given the ability to edit the entity’s metadata. This attribute does not affect the

business logic of the server in operations with entities; it is only a container of information.

3.2.8 Attributes of transferred records

When transferring the stored records from other electronic archives certain attributes of the
transferred records need to be saved in the so-called system attributes in order to ensure the
continuity of the life cycle of the stored records. Some system attributes of third-party
systems are entered in IMiS®/ARChive Server system attributes.

This is not possible for some attributes, or standards do not allow it.

For this purpose, certain attributes are predefined on the server. They store these metadata
values. During the process of “Importing” or “Transferring” records to IMiS®/ARChive Server,
the server automatically assigns values for these attributes on the basis of information it has
received from the client performing the operation.

The right to perform the “Import” operations is determined by the “ImportExport” role.

The right to perform the “Transfer” operations is determined by the “Reviews” role.

Except for their effect on the audit trail, transferred record attributes do not affect the

business logic of the server in its operations with entities.

nsys:trf:AuditLog«

Type: StringMax

Properties: ReadOnlyAfterCreate.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document.

Description: This value represents the audit trail of the entity from the previous system.
Although this information is important for the continuity and auditing of the entity life cycle,
this data is not required. Specifically, the third-party system is not required to add this
information to the metadata scheme of the exported entity when exporting. If the entity has
been exported from an ISDM, this data is exported to the metadata scheme and can be re-
imported to the attributes of the transferred entities by the third party ISDM. This attribute
does not affect the business logic of the server in operations with entities; it is only a container

of information.

nsys:trf:Systemld«

Type: String100

Properties: ReadOnlyAfterCreate.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document.

Description: This value represents a system identifier from the entity’s previous system.
Although this information is important for the continuity and auditing of the entity life cycle,
this data is not required. Specifically, the third-party system is not required to add this
information to the metadata scheme of the exported entity when exporting.

This data can be used for the traceability of the instance of the entity from the previous ISDM

to the instance of the entity in this ISDM.

If the entity has been exported from an ISDM, this data is exported to the metadata scheme
and can be re-imported to the attributes of the transferred entities by the third party ISDM.
This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

nsys:trf:ClassificationCode«

Type: String100

Properties: ReadOnlyAfterCreate, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document.

Description: This value represents the classification code of the entity in the previous system.
Although this information is important for the continuity and auditing of the entity life cycle,
this data is not required. Specifically, the third-party system is not required to add this
information to the metadata scheme of the exported entity when exporting. This data can be
used for the traceability of the instance of the entity from the previous ISDM to the instance of
the entity in this ISDM.

If the entity has been exported from an ISDM, this data is exported to the metadata scheme
and can be re-imported to the attributes of the transferred entities by the third party ISDM.
This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

nsys:trf:imported«

Type: DateTime

Properties: ReadOnlyAfterCreate, Searchable, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document.

Description: This value represents the date and time the entity was imported if the “Import”
function was used. Because the actual time of the creation of an entity (transfer from the
previous ISDM) is recorded in the system attribute “sys:Created”, if the “Import” or “Transfer”
function is used, the new ISDM must enter the date and time of the creation of the instance of
the entity in the new ISDM.

This value is automatically set by the ISDM. It is not provided by the client.

If the entity has been exported from an ISDM, this data is exported to the metadata scheme

and can be re-imported to the attributes of the transferred entities by the third party ISDM.

This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

nsys:trf:Evidence«

Type: StringMax

Properties: ReadOnlyAfterCreate.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document.

Description: This value represents an evidentiary record of the authenticity of the entity from
the previous ISDM if the “Import” function has been used.

If the entity has been exported from an ISDM, this data is exported to the metadata scheme
and can be re-imported to the attributes of the transferred entities by the third party ISDM.
This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

nsys:trf:MoveReason«

Type: String200

Properties: Searchable, ReadOnlyAfterCreate, Multivalue.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document

Description: These values represent reasons for each move (re-classification) of the entity in
the previous ISDM (if the “Import” function was used). This value can be used in conjunction
with the “sys:trf:MoveAgent”, “sys:trf:MoveDateTime” and “sys:trf:MoveClassificationCode”
attributes to provide more complete information about the movement of an entity in the
classification hierarchy of the previous ISDM. If the entity has been exported from an ISDM,
this data is exported to the metadata scheme and can be re-imported to the attributes of the

transferred entities by the third party ISDM. This attribute does not affect the business logic

of the server in operations with entities; it is only a container of information.

nsys:trf:MoveAgent«

Type: String200
Properties: Searchable, ReadOnlyAfterCreate, Multivalue.
Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Class, Folder, Document.

Description: These values represent directory entities (users) who have performed movements
(re-classification) of an entity in the previous ISDM (if the “Import” function was used).

This value can be used in conjunction with the “sys:trf:MoveReason”, “sys:trf:MoveDateTime”
and “sys:trf:MoveClassificationCode” attributes to provide more complete information about
the movement of an entity in the classification hierarchy of the previous ISDM. If the entity has
been exported from an ISDM, this data is exported to the metadata scheme and can be re-
imported to the attributes of the transferred entities by the third party ISDM.

This attribute does not affect the business logic of the server in operations with entities;

it is only a container of information.

nsys:trf:MoveDateTime«

Type: DateTime

Properties: Searchable, ReadOnlyAfterCreate, Multivalue.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document.

Description: These values represent the date and time when an entity was moved
(re-classified) in the previous ISDM (if the “Import” function was used). This value can be used in
conjunction with the “sys:trf:MoveAgent”, “sys:trf:MoveReason” and
“sys:trf:MoveClassificationCode” attributes to provide more complete information about the
movement of an entity in the classification hierarchy of the previous ISDM. If the entity has
been exported from an ISDM, this data is exported to the metadata scheme and can be re-
imported to the attributes of the transferred entities by the third party ISDM. This attribute

does not affect the business logic of the server in operations with entities; it is only a container

of information.

nsys:trf:MoveClassificationCaode«

Type: String200

Properties: Searchable, ReadOnlyAfterCreate, Multivalue.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Class, Folder, Document.

Description: These values represent the classification code of the entity when the entity was
moved (re-classified) in the previous ISDM (if the “Import” function was used).

This value can be used in conjunction with the “sys:trfMoveAgent”, “sys:trfMoveReason” and

“sys:trf:MoveDateTime” attributes to provide more complete information about the movement

of an entity in the classification hierarchy of the previous ISDM.

If the entity has been exported from an ISDM, this data is exported to the metadata scheme
and can be re-imported to the attributes of the transferred entities by the third party ISDM.
This attribute does not affect the business logic of the server in operations with entities; it is

only a container of information.

3.2.9 Attributes of retention policies and disposition holds
For retention policies, predetermined attributes and templates are on the IMiS®/ARChive
Server. They are intended for saving metadata of retention policies.
Attributes are divided into the following groups:
e Attributes that affect operations of retention policies.

e Attributes that do not affect operations and are only containers of information.

Attributes and their role are described in the following section:

nsys:ret:pol:Action«
Type: Uint32

Properties: Public, Required, Searchable, Picklist, IsNonEmpty, ReadOnlyAlways (in the case of
Copies of retention policies]
Restrictions: Valid values:

e 1, alias »Dispose«: the default retention policy action is entity disposition;

e 2 alias »Permanent«: the default retention policy action is permanent entity retention;

e 3, alias »Transfer«: the default retention policy is a transfer of entities to another archive
system and their disposition when successful transfer is confirmed,;

e 4 alias »Review«: the default retention policy is to leave the entity for the next review
process.

Use: Retention policies, Copies of retention policy
Description: A mandatory attribute that represents a default retention policy action used in
the review process. Operations for individual actions are as follows:

e The »Dispose« action: if the user who performs the action has a right to delete an entity,
the entity is irreversibly deleted as well as its metadata except for those that the deleted
entity contains. The operation is irreversible which means the entity and its metadata
cannot be reverted.

e The »Permanent« action: if the user who performs the action has editing rights on the
entity, the entity is permanent. This entity can no longer be edited and creation of

contained entities is not possible any more.

e The »Transfer« action: if the user who performs the action has entity deletion rights and
has confirmed a successful entity transfer in the review process, the entity is irreversibly
deleted. If the reference is recorded in the review process, the reference to the

transferred entity is logged in »sys:ret:pol:Reference« in the deleted entity.

e The »Review« action: the entity is saved for the next review process.

All these actions are logged in the entity’s audit trail together with a reason that is stated in

the review process with a comment (if there is one).

nsys:ret:pol:DetailedDescription«

Type: StringMax

Properties: Public, ReadOnlyAlways (in the case of Copies of retention policiesl

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Retention policies, Copies of retention policies

Description: An optional detailed description of retention period that is subject to change in the
life cycle of an entity. This attribute does not affect the business logic of the server in

operations with entities; it is only a container of information.

nsys:ret:pol:Reason«

Type: String200

Properties: Public, Required, IsNonEmpty, ReadOnlyAlways (in the case of Copies of retention
policies]

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Retention policies, Copies of retention policies

Description: A mandatory attribute. Its value is the default comment for an action in the review
process. This attribute does not affect the business logic of the server in operations with

entities; it is only a container of information.

nsys:ret:pol:Reference«

Type: String200
Properties: Public, ReadOnlyAlways, Searchable
Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Copies of retention policies.

Description: A mandatory attribute that is selected by a server in the review process and
cannot be changed. It contains a reference to a retention policy that is included in the
preparation process. This attribute does not affect the business logic of the server in

operations with entities; it is only a container of information.

nsys:ret:pol:Trigger«

Type: String200

Properties: Public, Required, ReadOnlyAlways (in the case of Copies of retention policies]
Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Retention policies, Copies of retention policies

Description: A mandatory attribute that must contain a valid condition for metadata search

(chapter Search syntax rules), otherwise the preparation process that contains a retention

policy with an invalid condition aborts with an erraor.

nsys:ret:hold:Reason«

Type: String200

Properties: Public, Required, ReadOnlyAfterCreate

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Hold of review processes

Description: A mandatory attribute that contains the reason for a hold of the review process.
This attribute does not affect the business logic of the server in operations with entities; it is

only a container of information.

3.2.10 Attributes of review processes
For retention policies, predetermined attributes and templates for saving metadata on the
review process are on the IMiS®/ARChive Server. As with retention policies and disposal hold

(chapter Betention periods), attributes are divided into those that affect only the

implementation of review processes and those that are only containers of information.

Attributes and their roles are described in detail below:

nsys:ret:rev:Action«

Type: UInt32
Properties: Searchable, Picklist, IsNonEmpty.
Restrictions: Valid values:
e 1, alias »Reviewing«: the value represents the action of review in the review process and
it does not affect the server;
e 2, alias »Complete«: the value represents the action of completion in the review process
on the server;
e 3, alias »Discard«: the value represents the action of cancellation in the review process
on the server.
Use: Review process
Description: An optional attribute that is key for completing or discarding the review process
on the server. The attribute use is as follows:
e \When creating the review process, the attribute has no value.
o \When the review process is in review, the attribute can change to »Reviewing«, but not
necessarily. The review process is marked that it is in the process of reviewing.

¢ When the review is completed, the value changes to »Complete« or »Discard«.

In any case, the request goes to the action implementation queue.
In the case of »Complete« values, the review process will be implemented, whereas in the case
of »Discard values«, the process will be discarded. In both cases, the status of review changes

to »Closed«. Changing of the review process is disabled.

nsys:ret:rev:Comments«

Type: StringMax

Properties: /

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Review process

Description: An optional attribute that is used for entering comments, explanations and other
information that is in any way connected to the review process. This attribute does not affect

the business logic of the server in operations with entities; it is only a container of information.

nsys:ret:rev:Lists«

Type: File

Properties: Multivalue, ReadOnlyAfterCreate, AppendOnly, IncludelnAIP, Searchable
Restrictions: There are no restrictions except those pertaining to the type or properties.

An entity can contain up to 65536 values.

Use: Review process.

Description: This attribute represents a container of contents. In the review process,

the latter are XML documents that represent the result of the preparation of the review
process. XML documents are prepared and recorded by the server and cannot be changed by
the user. The attribute belongs to a group of indexed attributes.

What is special about the »File« attribute is that it represents the Full Text Index.

If the system for ensuring authenticity and inalterability during documentation retention is on,
the fingerprint values from this container become part of the Archival Information Package
(AIP).

nsys:ret:rev:Members«

Type: String200

Properties: Multivalue, Required, Searchable, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Review process

Description: This attribute is mandatory and represents the committee members that are
present in the review process. This attribute does not affect the business logic of the server in

operations with entities; it is only a container of information.

nsys:ret:rev:Message«

Type: String200

Properties: Public, ReadOnly

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Review process

Description: This attribute is not mandatory. It is intended for the server to write a short error
description if an error has occurred in the creation or implementation of the review process.

If the creation or implementation of the review process was successful, this is recorded in the
value of the attribute. This attribute does not affect the business logic of the server in

operations with entities; it is only a container of information.

nsys:ret:rev:Query«

Type: String200

Properties: ReadOnlyAfterCreate, Searchable

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Review process

Description: The value of this attribute is not mandatory, but it must be present when the
preview process is created and the value of the »sys:ret:rev:Schedules« attribute is not
present. It is also not allowed for both attributes »sys:ret:rev:Query« and
»sys:ret:rev:Schedules« to have set values.

The value must contain a valid condition for metadata search (chapter Search syntax rules),

otherwise the preparation of the review process that contains retention policies with an invalid

condition aborts with an error.

nsys:ret:rev:Schedules«

Type: String200

Properties: Multivalue, ReadOnly, Searchable, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.

Use: Review process

Description: The value of this attribute is not mandatory, but it must be present when the
review process is created and the value of the »sys:ret:rev:Query« attribute is not present.

It is not allowed for both attributes »sys:ret:rev:Query« and »sys:ret:rev:Schedules« to have set
values.

The value must contain a valid condition for metadata search (chapter Search syntax rules),

otherwise the preparation of the review process that contains retention policies with an invalid

condition aborts with an error.

nsys:ret:rev:Scope«

Type: String200

Properties: ReadOnlyAfterCreate, Searchable, IsNonEmpty.

Restrictions: There are no restrictions except those pertaining to the type or properties.
Use: Review process

Description: The value of this attribute is not mandatory. It represents a classification code of
the entity under which the review process will be implemented. If the value is not present,

the preparation of the review process is implemented in the entire archive.

nsys:ret:rev:State«

Type: Uint32
Properties: Public, Required, ReadOnlyAlways, Searchable, Picklist, IsNonEmpty.
Restrictions: Valid values:
e [, alias »Unknown«: the value of the attribute represents an invalid state of the review
process;
e 1, alias »Created«: the value of the attribute is set by the server when the user creates a
New review process;
e 2, alias »Preparing«: the value of the attribute is set by the server in the process of
content preparation for the review process;
e 3, alias »InReview«: the value of the attribute is set by the server when the content has
been successfully created for the review process;
e 4, alias »Completing«: the value of the attribute is set by the server at the beginning of
review process implementation;
e 5 alias »Completed«: the value of the attribute is set by the server when the review
process has been successfully completed;
e B, alias »Discarded«: the value of the attribute is set by the server when the review
process has been successfully discarded,;
e 7/, alias »Failed«: the value of the attribute is set by the server if a fatal error has
occurred during implementation or discarding.
Use: Review process
Description: The value of this attribute represents the state of review process.
The »Preparing« value indicates that the server is currently creating content for the review
process.
The »Completing« value indicates that the server is implementing the review process.
The »InReview« value indicates that the server has successfully implemented the content for
the review process and that the user can review it, set actions, etc.
Changing the review process (for example, changing actions, entry of comments or reasons,
etc.) is allowed only if the value of the attribute is set to »Created« or »InReview«. In other
cases, changing the review process is not allowed.
In the case of the »Failed« value, a message is recorded in the »sys:ret:rev:iMessage« attribute

explaining why the implementation and creation of the review process was unsuccessful.

3.2.11 Attributes of versioned content
For versioning needs, the IMiS®/ARChive Server contains preset attributes intended for
storing metadata on the versioning process.

Individual attributes and their meanings are described in greater detail below:

nsys:ver:Seriesld«
Type: EntityReference

Properties: Public, ReadOnlyAlways, Searchable
Restrictions: There are no restrictions except for those deriving from type and properties.
Use: Versioning of content (documents)

Description: The attribute value is the identifier of the entity from which the draft was made
and is recorded upon creation.

nsys:ver:Label«

Type: String20

Properties: Public, ReadOnlyAlways, Versionable, Searchable

Restrictions: The label consists of a maximum of 10 levels (example: »1.0.0.0.0.0.0.0.0.1«); the
highest possible value of each level is »8939« (example: »1.0.9999«).

Use: Versioning of content (documents)

Description: The attribute value represents the label of the version in the series. This value is

created automatically on checking in the draft and represents the next version in the series.

nsys:ver:Comment

Type: String200

Properties: Public, ReadOnlyAlways, Versionable

Restrictions: There are no restrictions except for those deriving from type and properties.
Use: Versioning of content (documents)

Description: The attribute value represents the user comment which is recorded on checking
in the draft. This attribute does not affect the business logic of the server in operations with

entities; it is only a container of information.

3.3 Entity
An entity is a free-standing container of data and content that forms a logical unit of
information. An entity is uniquely identified using these three different identifiers:
e Aninternal or serial identifier (required, automatically generated when an entity is
created).

e A classification code (required, generated automatically or manually when an entity is

created).

e An external identifier (one or more, not required, externally generated, can be edited

throughout the life cycle).

Each entity is defined by its:
e Type
o (lassification code
e System attributes (name, description, life-cycle data, status, author, etc.)

e Entity-specific properties.

An entity is an abstract construct that saves the data and content of the object it saves

(a folder, a physical document, a group of documents).

The different types of entities are specialized for the types of objects they describe or save.
For this reason, they also have - besides system attributes - properties adapted to their
objects.

At the same time, an entity is a container of access rights which determine which user actions
are allowed or prohibited with the objects it saves.

Each entity has its own life cycle, which is recorded in its audit trail.

3.3.1 Types

The following types of entities have been defined in IMiS®/ARChive Server:
e (lass
e Folder and Sub-folders

e Document.

Class
Classes are intended for sorting records on the basis of their content or the business
activities of an organization. They are the basic building blocks of the classification scheme.
Classes can merge folders or documents by:
e Type of documents contained (for example, all invoices are located in one class,
all purchase orders in another).
e QOwner of the documents contained (for example, the personnel department keeps its

documents in one class, the sales department keeps its documents in another, etc.)

The number of possible classes and the content of these classes are not prescribed by
IMiS®/ARChive Server. The classification scheme manager can configure classes as they wish,

in line with the needs of the organization using the archive server.

Folder

A folder represents a group of entities (subfolders, documents) that form a rounded-out whole
in terms of content. It represents the “case file” on a given subject (a question, topic, task,
project, etc.), complete with all properties and content.

A folder is the basic unit of merging, record keeping, sorting and archiving documents.

Document

The document represents a container for the properties and content it saves.

One document can save multiple contents (for example, text, images, video).

Though it is usually contained in folders and child folders, it can also appear as a free-standing

document within a class. It represents the basic archive record unit for saving content.

3.3.2 Hierarchy

Every electronic archive is organized as a tree that starts with multiple roots
(classes on the first level) and branches which represent individual entities.

The end classes contain the content entities (folders and subfolders, documents).

IMiS®/ARChive Server does not limit the depth of the classification scheme.

When defining a classification scheme, the following rules should be taken into consideration:
¢ One or more classes must be defined on the first level of the classification scheme.

Adding folders or documents to the root of the tree must be disenabled.

e Every entity capable of containing other entities can only contain one type of subordinate
entity.

e A class can contain sub-classes.

e The end class can contain folders or documents.

e A folder may contain subfolders.

e End folders can only contain documents.

e A document cannot contain child entities.

The hierarchies of entities in the classification scheme can also define access rights for all child

entities (chapter Access), except when access rights are defined in greater detail in the child

entities themselves (chapter Explicit permission or prohibition).

At the same time, the hierarchy defines the security class (when it is not explicitly defined;

(chapter Confidentiality (Security Class) and whether an entity’s status is required (the

“sys:Status” attribute).

Status is defined for:
e (lasses
e [olders and subfolders

e Documents filed into classes.

If a status value is not explicitly defined, it is inherited from the parent entity. This is also valid
for classes on the first level, which receive the inherited value “Opened” if a value has not been

explicitly defined.

3.3.3 Components
Entities consist of different components, including:
e A system attribute scheme.
e A specialized attribute scheme for the specific type of entity.
e A physical record management attribute scheme.
o Atransferred record attribute scheme.
e A store with archived content and metadata about the content.
e Access right components.
e Authentication element components.
¢ References.

e Retention policies.

The structure of most components is determined by a template which serves as the basis for
entity creation (a scheme of specialized attributes). Other components are systemic in nature
and are always present because they are critical for the existence and life cycle of entities

(a system attribute scheme, etc.) An entity is also the container of its access rights, audit trail

and authenticity proof elements.

3.3.4 Templates

Templates prescribe a metadata scheme - required and allowed attributes.

At the same time, they are the basis for creating special templates for entities of the same
type, which then inherit the attribute scheme.

Each template contains embedded and previously defined system attributes.

These attributes are required for the correct operations of IMiS®/ARChive Server and cannot
be changed. Their names are derived from the fields to which they pertain: “int:”, “sys:”, “trf:”,
and so forth.

All other attributes can be added to or deleted from templates by the administrator, until the
first entity has been created. After that point, possibilities for changing templates become

limited. These limitations are listed below.

When adding attributes to the template, an appropriately authorized user may specify

whether:

e The attribute's value within the framework of the entity is publicly accessible (Public).

e The attribute can have multiple values (Multivalue).

e The attribute is optional or mandatory (Required).

e The value of the attribute can be changed after it has been stored to the server
(ReadOnly).

e The value of the attribute is inherited from the parent entity (Inherited).
If the parent entity's values are not explicitly set, the values will be inherited from the
first parent entity that has explicitly set values.

e Users can edit an already saved attribute or only append values to the attribute without
deleting existing values (Append Only).

e The value of the attribute should be included in the archival information package (AIP) as
part of document authenticity protection (IncludelnAlP).

e The value of the attribute should not be empty (IsNonEmpty).

e The attribute is versionable (Versionable).

Templates can be deleted only if there are no entities which would be rendered invalid by the
deletion.

Other entity types (class, folder, document) must be assigned a template and must be built in
accordance with the rules defined by the template’s metadata scheme.

Templates can be newly created by the administrator, or they can be derived from other

templates on the condition that the entity types are the same.

Example: The ‘“Invoice” template is used to create the "Incoming invoice” and “Outgoing invoice”
templates. This way it is not necessary to define common attributes for each separate template.
Additionally, all future changes to the “Invoice” template will be automatically taken into account in the

templates derived from it, “Incoming invoices” and “Outgoing invoices’,

3.3.5 Access
Access to entities and entity management functions is of key importance, as it provides the
basic principles of information security:
e Integrity: access is used to ensure that information is not changed.
e (Confidentiality: access is used to ensure that information is accessible only to authorized
persons.

e Availability: access is used to ensure the availability of information to authorized persons.

Access right checking is a two-step process:
e (Checking the security class.

e (Checking access to entities (the Access Control List - ACL).

Security class is a requirement for viewing whether an entity exists and for performing actions
with the entity. The administrator can define the maximum-security class level for which each
user or each group is authorized.

The user must have the same or a higher security class level as the entities they can view.
Security class is specifically defined for entities, or inherited from parent entities.

If a user’s security class level enables them to determine the existence of entities, their ability

to access these entities is checked.

IMiS®/ARChive Server uses Access Control Lists (ACL) to check user access rights.
The system checks whether a user attempting to perform an operation on the server has the

right to do so.

If the user does not have the right to perform the operation, the operation is not performed

and the server returns an error. The illustration below shows how access works.

User has effective
right or rale

Sufficient security
class

Operation > Result

Insufficient security
class

User does not have
Errar effective right or role
(entity does P> Error
not exist)

Image 3: How ACLs work

3.3.5.1 Confidentiality (Security class)

The degree of confidentiality or security class provides an additional level of security for access
to archived records. It is used to prevent the disclosure of documents to unauthorized
persons. The administrator can define security class on the level of documents and can specify
which security classes each user (or group) is allowed to view. In the basic settings, all
document types are accessible to all users (degree of confidentiality is 0). As in the case of
access rights, the security class is inherited from the top down within the hierarchy.

If an entity in the hierarchy has an explicitly defined security class, the explicit value overrides

the inherited one.

The following rules exist for defining security class:

e The highest security class a user can set for an entity is equal to the calculated effective
security class.

e For a given entity, a user can only set a security class higher or equal to the security
class of the parent entity. If a security class has not been defined for the parent entity,
the user can enter a security class for this entity that is equal to or lower than user’s
effective security class.

¢ When the security class is raised, it is also raised for all child entities with the same or
lower security class as the entity whose security class has been raised (this applies for
explicitly set security classes as well as inherited).

¢ \When the security class is lowered, it is also lowered for all child entities with a greater

inherited security class.

Example 1. Let’s refer to the hierarchy in the image Access — Effective Rights. Let’s assume that a
security class has not been explicitly defined for any of the entities. Let’s set a security class of 2
(Restricted) for the class. Because of inheritance, the security class for all child entities is then set to

»Restricted.

Example 2: We would like to raise the security class of the folders in the previous example to
»Unclassified«. Because the parent class has a security class of »Restricted«, we cannot raise the

security class.

Example 3: We set the explicit security class of the subject to »Restricted«, and then we take away the
security class of its parent class. The security class of the subject and the subordinated documents is

set to »Restricted.

Example 4: We would like to raise the security class of the class to »Confidential«. The security class of
the folder and the child documents is changed to »Confidential«, because subordinated entities have a

lower security class than the entity for which the security class is raised.

Example 5: We would like to raise the security class of the folder to »Secret«. Consequently, the security
class of documents is raised to »Secret«. We then lower the security class of the folder to »Unclassified«.
The security level of the folder and subordinated documents is maintained, as the folder has a higher

explicitly set security class than the folder whose security class is lowered.

As noted above, the highest security class a user is able to set depends on their calculated
effective security class. As in the case of calculating effective rights, an effective security class

is defined for each user, depending on the groups to which the user belongs.

The effective security class is calculated in the following way:
e |f a security class has been explicitly set for a user, this value takes precedent.
e |f a security class has not been explicitly set for a user, their effective security class is
calculated on the basis of the groups to which the user belongs.
The effective security class is the highest security class of all groups to which the user

belongs (regardless of their position in the entity hierarchy).

Example 1: A security class of 1 (Unclassified] has been explicitly set for a user, although this user is in
two groups, one with a security class of 2 (Restricted) and 3 (Confidentiall. This user’s effective security
class is 1, because the explicitly set security class takes precedent over the security classes of the two
groups. This user can access entities accessible to all users (security class of O] and entities whose

security class is set to 1 (Restricted).

Example 2: Let’s take the user from the previous example and delete the security class we explicitly set
for them. This user’s effective security class is now 3 (Confidentiall, as the highest security class of the
groups to which the user belongs now takes precedent. This user therefore has access to entities with a

security class of 3 or lower.

3.3.5.2 Access Control List (ACL)
A user with the right to define access rights for an entity (Change permissions) can assign an
Access Control List to a user, user group or an attribute of type DirectoryEntity.
Access rights are divided into two groups:
e Access rights to an entity.

e Special access rights to an entity.

An authorized user can explicitly set Allow or Deny for each group of rights. These values are
valid for an individual right within the group, and can also be set for a limited period of time.
Explicit permissions and inherited rights are used to determine effective rights, that is,

the rights of a user to perform requested operations on the server.

3.3.5.2.1 Access rights for an entity
The following access rights are used for classes, folders and documents:
e Read: The right to view an entity.
The user must have this right to open an entity in read-only mode.
o Worite: The right to edit in an entity.
Besides Write rights, to edit an entity, the user must also have Read rights (Read-write
mode).
e Move: The right to move an entity in the classification scheme.
The user is allowed to move an entity and its child entities in the classification scheme.
o Delete: The right to delete an entity.

The user is allowed to delete an entity and its components.

Create entities: The right to create new child entities or sub-entities.

This right allows users to create new entities inside the entity.

Change permissions: The right to edit the Access Control List (ACL).

The user is allowed to change access rights for entities and metadata.

Changing access rights is only possible if the entity is open for editing.

Change security class: The right to change the security class.

Users with this right can set the initial security class of an entity before the entity has
been saved, or they can change the security class of existing entities. If a user does not
have this right, they cannot set the initial security class (it is implicitly inherited from the
parent entity) or change it at a later time.

Change status: The right to change the status. Users granted this right can change the
status of the entity. The default status value is inherited from the parent.

The two available explicit values of the status are "Opened" and "Closed".

When an entity's status is "Closed", this will also set all its child entities to "Closed".
When a previously closed entity is set to "Opened”, the status only changes for this
specific entity, while its child entities preserve their initial status.

Change retention: The right to change the retention policies.

Users with rights can change the validity of entity retention policies. Default values are

inherited from the parent entities.

Create reference: the right to create references between entities. The users who have

been granted this right can create references with which they can connect different

types of entities.

IMiS®/ARChive Server Manual

Version 9.9.1810

The table below shows operations with entities and the access rights required to perform

them.

Operation Access right
o 2 |g|g8 |8
[2
. € 5 B2 | c @
o |2 | o o 9 o 3 8 3218 o
BlE|8|s |28 g5 |88 2|8 |
o (@)}
SRR AL AR RN R
= ; 5|8 |8
O O O
Opening entities in Read mode v
Editing entities v | Vv
Deleting entities v v
Editing the ACL v | v v
Re-classification (source entity) | v
Re-classification (target entity) v
Creating entities (subordinate v
entity)
Changing the security class v v
Changing status v v
Changing the retention policies v
Create references v v
Create draft v v
Check in draft v | v
Discard draft v
Table 4: Operations and rights
2018 © Imaging Systems, Inc., All rights reserved. 80

When checking in a draft, the access rights are verified and if the user executing the operation
is the owner of the draft (is present in the attribute »sys:0Owner«), or if the user has the

»DraftManagement« role. For more information see chapter Roles.

3.3.5.2.2 Access rights to metadata

The following access rights are used for entity metadata:
e Read: The right to view metadata.
e \Worite: The right to edit metadata values.
o Delete: The right to delete metadata.

e (Create: The right to assign metadata values to previously empty metadata.

The server also uses access rights to metadata to limit access to and editing of metadata that
are not public. So, a user with the Read right for a given entity is prevented from reading
individual metadata by denying the Read right for metadata. If access rights have not been
defined for metadata, the metadata takes them from the access rights to the entity to which
the metadata belongs.

Denying the Delete right for metadata does not prevent the deletion of an entity and its
metadata.

If a user has the right to delete an entity but does not have the right to delete its metadata,
the right to delete the entity takes precedent over the prohibition on deleting the entity’s

metadata.

3.3.5.2.3 Exceptions
When calculating effective rights (chapter Effective rights), there are a few exceptions which

can be divided into:
e Exceptions to calculating effective rights from attribute rights;

o Exceptions to calculating effective rights on metadata;

Exceptions to calculating effective rights from attribute rights:

The list of access rights can be set to individual attributes of the »DirectoryEntity« type.
The list of rights set this way applies to all users or groups located in this attribute, with the
exception of system users and groups. A special exception is the system group »sys:Everyone,

to which all registered users belong and which is applied when calculating effective rights.

Exceptions to calculating effective rights on metadata:

Exceptions to calculating effective rights on metadata depend on the settings of an individual

template. Depending on the template settings, the following exceptions apply:

e [f the attribute on the template is set to public, then each user has the right to read

metadata.

e [f the attribute on the template is set to mandatory, then each user has the right to

create metadata but not the right to delete it.

¢ Depending on the »read-only« attribute setting, the following restrictions apply:

If the attribute is set to »ReadOnlyDisabled«, then no exceptions apply.

If the attribute is set to »ReadOnlyAfterCreate« and the entity is not new, then the

user doesn’t have the »Write« and »Delete« right.

If the attribute is set to »ReadOnlyAfterCheckin« and the entity is not a working copy,

then the user doesn’t have the »Write« and »Delete« right.

If the attribute is set to »ReadOnlyAlways«, then the user doesn’t have the »Write«

and »Delete« right.

The user can read metadata even without the »Read« right for the entity containing the

metadata if this is enabled by the global security setting on the IMiS®/ARChive Server.

The table below shows restrictions on users’ rights to view public metadata. These limitations

differ based on the user’s »Read« rights for the entity and global security settings.

Read access

Restrictions on viewing public metadata right for an

entity

Global security

setting

The user will not see any information, and cannot affirm
the existence of an entity (even if they have the

appropriate security class).

The user sees public metadata. The user can confirm
the existence of the entity, but cannot view its non-

public metadata.

Vv

If the user has read rights for the entity, they also have

the right to read public metadata regardless of global vv

security settings.

N/A

Table 5: Restrictions on viewing public metadata

Besides the exceptions listed above, the following system metadata are treated separately:
sys:Externallds, sys:Opened, sys:Closed, sys:Creator. No permissions or prohibitions can be set

for these metadata.

3.3.5.2.4 Roles
A role is a package of rights that enables a user to perform certain operations on the server.
The following roles are predefined:
e AuditLogQuery: This role enables a user to obtain the audit trail.
e ImportExport: This role enables a user to import and export records.
¢ ContentManagement: This role enables a user to implement indexing and automatic
content conversion requests.
e Reports: This role enables:
- The display of system reports on imports and exports.
- The display of system reports on access, folders, documents, contents and retention
periods.
- Printing of data on classes, folders and documents.
- Printing of classes (and folders of the classification scheme).

o ManageDraft: this role enables viewing and checking in/discarding a draft document of
other users (combined with the entity access rights).

e AdminCodelListaRead: this role enables a review of codelists.

¢ AdminCodelListUpdate: this role enables adding, deleting or changing the codelists.

e AdminCountersRead: this role enables a counter settings review.

¢ AdminCounterUpdate: this role enables adding, deleting or changing counter settings.

¢ AdminDirectoryEntitiesRead: this role enables a review of directory entities.

o AdminDirectoryEntityUpdate: this role enables adding, deleting or changing the
directory entity.

¢ AdminDirectoryGroupRead: this role enables a preview of directory group members.

¢ AdminDirectoryGroupUpdate: this role enables adding or deleting directory group
members.

e AdminAttributesRead: this role enables a review of attributes.

o AdminAttributeUpdate: this role enables adding, deleting and changing an attribute.

e AdminTemplatesRead: this role enables reading of entity templates.

e AdminTemplateUpdate: this role enables adding, deleting or changing entity templates.

AdminStorageProfilesRead: this role enables reading of server profiles.
AdminStorageProfileUpdate: the role enables adding, deleting or changing server
profiles.

AdminStorageVolumesRead: this role enables reading of server volumes.

AdminStorageVolumeUpdate: this role enables adding, deleting or changing server
volumes.

AdminACLRead: this role enables reading of access rights.

AdminACLUpdate: this role enables adding, deleting or changing access rights.
AdminLegacyArchiveRead: this role enables reading older client's server configuration.
AdminLegacyArchiveUpdate: this role enables changing older client's server
configuration.

AdminArchiveSettingsRead: this role enables reading of general archive settings.
AdminArchiveSettingsUpdate: this role enables adding, deleting or changing general
archive settings.

AdminAuditLogSettingsRead: this role enables reading of audit trail settings.
AdminAuditLogSettingsUpdate: this role enables adding, deleting or changing audit trail
settings.

AdminRetentionRead: this role enables reading of retention policies.
AdminRetentionUpdate: this role enables adding, deleting or changing retention policies.
AdminContentSettingsRead: this role enables reading server configuration for content
management.

AdminContentSettingsUpdate: this role enables changing server configuration for
content management.

AdminLTANSSettingsRead: this role enables reading server configuration for long-term
content archiving.

AdminLTANSSettingsUpdate: this role enables changing server configuration for long-
term content archiving.

AdminAAASettingsRead: this role enables reading server configuration for external user
authentication and synchronization.

AdminAAASettingsUpdate: this role enables changing server configuration for external
user authentication and synchronization.

AdminSecuritySettingsRead: this role enables reading of digital certificate storage.

AdminSecuritySettingsUpdate: this role enables changing of digital certificate storage.

3.3.5.2.5 Explicit permission or prohibition
A user’s effective rights can be managed by setting explicit permissions and prohibitions.
Every change made to permission or prohibition is logged in the audit trail.
Permissions and prohibitions have the following properties:
e For each group of access rights, permissions or prohibitions can be set for each user or
group.

e Permissions or prohibitions can be set for a limited period of time.

Time limits on permissions and prohibitions can be divided into:
e Permissions or prohibitions without a time limit.
e Permissions or prohibitions with a time limit starting at a specified point.
e Permissions or prohibitions with a time limit ending at a specified point.

e Permissions or prohibitions with a time limit starting and ending at a specified point.

Permissions or prohibitions without a time limit

This is the standard way to use permissions and prohibitions. Permissions and prohibitions of
this kind are always valid, regardless of when they are used to calculate a user’s effective

rights.

Permissions or prohibitions with a time limit starting at a specified point

A starting point is defined for permissions or prohibitions, but not an end point.
These permissions and prohibitions are used to calculate effective rights if the current date

is later than or on the date of the start of the validity of the permission or prohibition.

Permissions or prohibitions with a time limit ending at a specified point

An end point is defined for permissions or prohibitions, but not a starting point.
These permissions and prohibitions are used to calculate effective rights if the current date is

before or on the date of the end of the validity of the permission or prohibition.

Permissions or prohibitions with a time limit starting and ending at a specified point

A start and end point are defined for permissions or prohibitions.
These permissions and prohibitions are used to calculate effective rights if the current date
is later than or on the date of the start of the validity of the permission and before or on the

end of the validity of the permission or prohibition.

Explicit permissions or prohibitions are automatically inherited for all subordinate entities in a

given hierarchy.

3.3.5.2.6 Effective rights
Effective rights are a package of inherited and explicit permissions and or prohibitions that tells

us whether a user has the right to perform an operation in IMiS®/ARChive Server.

The order of priority in which permissions or prohibitions are taken into account when
calculating effective rights is as follows:

1. Explicit allow rights.

2. Explicit deny rights.

3. Inherited allow rights.

4. Inherited deny rights.

Calculations of effective rights are not affected by the number of groups or attributes in which
a user is included, but they are affected by the hierarchy of groups in the Access Control List.

The hierarchy shown in the illustration below presents the calculation of effective rights.

Class

AN

Folder

Document 1

\/_\

Document 2

"

Image 4: Hierarchy with a class, folder and 2 documents

Example 1. We would like to set read rights for the entire hierarchy shown in the illustration below for

a particular user. In the Access Control List for the class, let’s set an explicit Read right for this user.
Inheritance in the hierarchy enables this user to have the effective right to read in all subordinate
entities in the class. The user in our example can open the class, the folder and both documents in Read-

only mode.

Example 2: Let’s also give the user in example 1 the right to edit the folder and both documents in the
folder. To edit entities, the user will need both Read and Write rights. The user has already inherited
Read rights from the class. That is why we only need to set an explicit Write right for this user in the
Access Control List of the folder. This will give the user effective Read and Write rights for the folder and

for both documents within the folder.

Example 3: Because of the actions performed in examples 1and Z, the user has rights to view all entities
in the hierarchy and to edit the folder and both documents within the folder. We would now like to deny
the user the ability to edit Document 1. So, we set an explicit Write deny right in the Access Control
List. Now the user cannot edit this document, as the deny right has priority over the inherited allow
rights when calculating the user’s effective access rights. The user still has the right to edit the folder

and Document 2, but cannot edit Document 7.

Example 4: In example 3 we prevented the user from editing Document 1. Now let’s add an explicit Write
allow right for the user in the Access Control List.

Since explicit permissions have priority over explicit prohibitions, based on the order in which
permissions are taken into account, the user obtains the effective Read right and can modify the

document.

Example 5: In the access control list for the folder, let’s give the user the explicit allow right to edit the
Access Control List (the Change permissions right). The user receives the effective right to edit the ACL

in the folder and both documents (Document 1 and Document 2.

Example 6: We would like to revoke the right of the user from example 5 to edit the Access Control List
(ACL). At the same time, we would like to prevent them from editing certain metadata in the folder and
the two documents because this metadata is not of a public nature. In the ACL of the folder, we set an
explicit deny right for editing metadata. This prevents the user from editing the metadata, even though

they have the right to edit the folder and both documents (Document 1 and Document 2J.

Example 7: Let’s revoke the user’s explicit Read right for the Access Control List (ACLJ for the class.

This will prevent the user from opening and editing all entities in the hierarchy.

Example 8: Let’s remove all of the user’s explicit allow and deny rights from the Access Control List
(ACL) for all entities in the hierarchy. In the ACL for the class we add explicit Read, Wrrite and Delete
rights for the entity and an explicit Delete deny right for all metadata in the hierarchy. This will enable
the user to edit all entities and metadata in the hierarchy, but will prevent them from deleting metadata.
The user cannot delete metadata, but they can delete an entire entity including the entity’s metadata

because the right to delete the entity has priority over the prohibition on deleting the entity’s metadata.

Example 8: Let’s set a starting point on the explicit metadata Delete deny rights we set in example 8:

this deny right will take effect on 1. 4. 2018, there is no end point.

The user will lose the effective right to delete metadata on 1.4.2018; before this date, the user can

normally delete metadata.

If we set an end point for the restriction with the same date (with no starting point), the user will not

have the effective right to delete metadata before 1.4.2018; on and after 1.4.2018 the user will have this

right, as the deny right will no longer be taken into account when calculating effective rights, and the

right to delete metadata is taken from the entity.

Example 10: Let's clear the Access Control List (ACLJ for all entities in the hierarchy, removing all

explicit allow and deny rights. Then let’s set the following ACL values for the user:

In the ACL for the class, let’s set an explicit Read allow right for the entity from 1.4.2018 to
15.4.20178.

In the ACL for the folder, let's set explicit Wrrite and Create sub-entities allow rights for a limited
period of time, from 6.4.2018 to 12.4.20185.

Now let’s set an explicit Write deny right in the ACL of Document 7,

and let’s define a time period for this right, 8.4.2018 to 12.4.2018.

In line with the values we have entered in the Access Control List (ACL), the user now has the

following rights for specified periods of time:

From 1.4.2018 to 15.4.2018, the user has the right to open all entities in the hierarchy.
From B6.4.2018 to 12.1.2018, the user has the right to edit the folder and Document 2
and the right to create child or sub-entities in the folder.

The user is allowed to edit Document 1 from 6.4.2018 to 8.4.2018, as the explicit Write
deny right for this document takes effect on 8.4.2018.

The explicit Write deny right has priority when calculating effective rights, and this
overrides the effective Write allow right.

The user does not have the right to open and edit entities in the hierarchy between
1.4.2018 and 15.4.2018. The user still has the right to read public metadata if the global

security settings allow this.

3.3.6 Identifiers

IMiS®/ARChive Server uses three methods for identifying individual entities. With each
identification method, each identifier specifies one and only one entity; an unknown identifier
can also specify no documents in the hierarchy. An identifier can never specify more than one

entity.

3.3.6.1 Internal identifiers

An entity’s internal identifier is automatically generated string 24 to 32 bytes in length

(the length depends on the requirements of the client).

The content of the string depends on the identifier of the archive, which should be unique for
each archive. This ensures that the unique identifiers of individual entities are also globally

unique.

IMiS®/ARChive Server uses AES-256 encryption when generating strings, and this ensures
that the probability of randomly guessing the correct identifier is negligibly small.

In an archive with 100,000,000 entities, the probability that a randomly generated identifier
will be correct is 1: 1,593 x 10%° for identifiers 24 bytes long 1: 8,636 x 107° for identifiers

32 bytes long.

For saving identifiers when the binary method of saving is not possible, the server enables
three methods for encoding internal identifiers:

o Hexadecimal encoding, where the identifier is represented by a string of characters from
0 to 9 and from a to f. This string is 48 characters long for 24-byte identifiers and 64
characters long for 32-byte identifiers.

e BaseB4 encoding, where the identifier is represented by a string of characters taken
from the lower- and upper-case letters of the English alphabet (52 characters),
numbers (0-9), hyphens (-) and underscores (_). This string is 32 characters long for
24-byte identifiers and 43 characters long for 32-byte identifiers.

e BaseB85 encoding, where the identifier is represented by a string of characters taken
from the array of baseB4 characters and 21 additional characters: #$%&0%+;<=>?@""{|}~.
An internal identifier of this kind is 30 characters long for 24-byte identifiers and 40

characters long for 32-byte identifiers.

The encoding method is determined by client requests based on the requirements of the

database model where the identifiers will be stored.

3.3.6.2 External identifiers

External identifiers are custom character strings up to 100 characters in length which are
generated independently of the IMiS®/ARChive Server environment. The server enables the
association of an entity with any number of external identifiers on the condition that no entity
in a given archive is associated with the same identifier.

An entity is not required to be associated with an external identifier.

3.3.6.3 Classification code

For faster work with entities in the classification scheme and for enhanced transparency,
entities (classes, folders, documents) are labeled in the classification scheme.

IMiS®/ARChive Server automatically assigns classification codes to entities in the classification
scheme based on the position of classes and folders in the hierarchy. Classification codes are
uniformly defined and are assigned at installation or at a later time by managing the
classification scheme.

If the position of a class is changed in the classification scheme, all entities filed under this class
are given new identifiers that show their new position in the hierarchy. The new classification
code immediately becomes valid for all entities filed in the class.

When the server cannot assign a classification code to a newly created entity because of an
inadequate configuration, or because the configuration has been purposefully set up this way,
the user must define a classification code when the new entity is created.

This classification code must also be uniquely defined within the parent entity; if it is not, the
server will deny the request for the creation of the new entity and will return an error.

The request will be also denied and an error will be returned if the user has not defined a
classification code.

When moving records within an archive (re-classification), the classification codes of all moved
entities must be changed to correspond to their new positions within the hierarchy.

In this casg, classification codes cannot be manually added and the server will deny a request
to move an entity if a new classification code cannot be automatically assigned to any of the

moved entities.

3.3.6.3.1 Fully Qualified Classification Code — FRCC
Example: C=012C=02'F=2014-01/D=0001

The canonical form of the fully qualified classification code is used mostly for communications
between IMiS®/ARChive Server and clients; users rarely see classification codes in this form.
The canonical form of the fully qualified classification code consists of multiple components,
each of which represents an entity’s own/partial classification code from the hierarchy to
which the entity belongs.

The components are always separated by the “A” sign. Each individual component consists of
two parts. The first part is a single-character code for the entity type: C for class, F for folder
and D for document. The second component is the actual value of the classification code; its

two parts are separated by the = sign.

3.3.6.3.2 Public Classification Code — PCC
Example: 01.02-2014-01/0001 (equal to the canonical form in the previous example)

The public classification code is the form that users see as the full classification code. It is made
up of the same number of components as the canonical form, but each component only
contains the actual classification code value. The components include characters the product
administrator has defined as separators in classifications codes, with a different character for
each entity type.

In this example, components that represent classes are preceded by a period (.J, components
that represent files are preceded by a minus (-), and the final component, which represents a

document;, is preceded by a backslash (/).

3.3.7 Life cycle

There are two different types of entity life cycles. The first describes a change of status,

and the second is only the life cycle of the instance within a user session.

The information presented below is valid for the class, folder and document entity types unless

a specific entity type is listed.

3.3.7.1 Entity status

When an entity is created, it receives Opened status. For a detailed description see chapter
Hierarchy. The user can create and assign custom statuses by changing attribute values. Once
an entity has been saved for the first time, the attribute values can no longer be changed. The
user can change the status by performing an action to change the status.

In the Opened status, the user can perform operations on entities that enable entity attributes
to be changed and child entities to be added (for example, entering new documents in a folder).
The user can change the status to Closed only when they are fairly sure that the entity will no
longer be changed and new entities will not be created under the entity. The user cannot edit
the content of closed entities. In a closed entity and its subordinate entities (chapter “Closed”
Status) the user can launch the authentication process. For more information see chapter
Conditions. This makes it possible to create and maintain authenticity proof elements,

which would otherwise become invalid in storage if changes were later made to the entity.

An entity can be deleted at any phase of the life cycle. Deletion before the disposition process is
exceptional and should not be a part of regular processes at an organization. It should only be

used if an entity has been incorrectly entered, as it is intended for error correction.

Creating

Authenticity
ensuring
process

Retention
and
disposition

Deleting
entity

Image 5: Entity life cycle

3.3.7.1.1 “Opened” status

Opened status enables the entity to be opened in Write mode and makes it possible for new
child entities to be added to the entity (for example, creating new documents in a folder).

A user opens a closed entity by changing the status of only the entity they would like to work

with; the status of all child entities remains closed.

A closed entity can only be opened if:
e The entity the user would like to open is closed.

e And has opened child entities.

3.3.7.1.2 “Closed” Status

An entity with Closed status can only be opened in Read-Only mode. It is not possible to edit
the attributes or to add child entities. If authentication settings have been entered in
IMiS®/ARChive Server, the server will include entities of this kind in the list of entities suitable
for generating authenticity proof elements. Closing an opened entity causes the closing of all
open child entities with a status. If the closed entities (and the entities they contain) are
included in an authentication process, an Archival Information Package (AIP) is generated for all
edited entities and the authentication process is launched. For more information see chapter

Conditions.

3.3.7.2 Entity instance

An instance is a representation of an entity in IMiS®/ARChive Server’s working memory.
When opening an entity, the system must first check whether the entity is already in the
cache. It is always in the cache when it is being used in another session.

If the entity is not in the cache, it is loaded from the database; otherwise the already existing
instance, which is shared by all sessions, is used. This model enables the efficient use of server
resources and faster responses to requests to open entities, as the use of already loaded
instances is incomparably faster than transferring them from the database.

If a user has Read access, a new copy of the entity will be created in the cache, and this copy
will not be accessible to any other session. If another session already has its own copy of the
entity opened (the entity is opened in Write mode in another session), access is denied.
Access is also denied if the entity is marked as permanent.

The other sessions will access the instance from which the copy for writing was made;

this copy remains active for all the other sessions and cannot be edited. At the same time,

only one copy “for writing” is allowed.

Consequently, no change made to the entity will be visible in other sessions until the process
for saving the entity opened for writing is performed. This process checks the consistency of
the entered metadata, saves changes to the database and replaces the instance in the cache.
After saving, all new operations for opening the entity return the changed instance.

Sessions where the entity was opened before saving will not see the new version in the existing

instance (the model operates on the principle of an unchangeable status at the moment of

opening).

Opened in "read-
wiite" mode

Opened in
“read-only" mode

"Create
suhentity”
right on parent
entity?

"Read"
and "Write"

right on
entity?

Opened in
"read-only"

Opened in
"read-write" Writing
mode
Y
(.|

Saving
succeed?

Image B: Entity life cycle in the working memory of the server

3.3.7.3 New entity

An unsaved instance of an entity is created as a result of a request from a client which must

contain:
e The valid unique identifier of the parent entity.

e The valid unique identifier of the template, which cannot be a system or internal template.

It also checks if the following conditions have been met:
e The right to access the parent entity as determined by the security class.
e The user has the right to create new child or sub-entities in the parent entity.
e The parent entity cannot have status “Closed”.

e The parent entity must not be marked for permanent retention.

For more information see chapter Beview process.

e The unique template identifier must be included in the list of allowed entities in this part

of the classification scheme.

If any of these conditions has not been met, IMiS®/ARChive Server will return an error.

It will create a new instance of the entity in RAM, but this instance is not recorded in the
database in this phase.

The instance is accessible only in the session of the user who created the object. If a request is
made for the new entity from another session, the instance will not be visible.

The entity type determines the template used, and the template cannot be changed.

A classification code for the entity has not been defined in this phase. The entity is physically
saved on the server once the method for saving has been called up.

After a successful save, the entity becomes accessible to other sessions.

3.3.7.4 Opening an entity in Read-Write or in Read-Only mode
In IMiS®/ARChive Server, a request to open an entity is sent by a client. The client determines
whether the entity will be opened in Read-Only or RO mode or in Read-Write or RW mode.

The server opens the requested instance of the entity (chapter Entity Instance) and checks

access rights.
If the security class of the entity allows it to be opened and if the user has the required access

rights, the server will return:
e A reference to the opened instance of the entity.
e An identifier of the entity’s parent entity.
e The template with which the entity was created.

o Different kids of system metadata on the entity (date created, last edited, effective rights
of the user for the entity, etc.).

e List of templates which can be used to create child entities.

All later requests must refer to the reference given.

The entity-opening event leads to the creation of a record of the event in the audit trail.

3.3.7.5 Reading entity content
A request to read data from an entity is a demand that IMiS®/ARChive Server read the
components of the entity. The entity must be opened in either Read-Only mode or Read-Write
mode. The request must contain (at least):

e A reference to the entity instance.

e The extent of the data being read.

The extent of the data being read contains instructions that tell the server what its reply to
the request should contain.
The request can contain a demand for:
o Metadata (all, public, listed).
e Access rights (records of access rights for the entity, records of access rights for the
attributes, or both).

e Proof of the authenticity and integrity of the entity (AIP and ERS).

In its reply to the client, the server returns all the values of the requested attributes, except
for those for which the user does not have access rights.

If the user does not have access rights, IMiS®/ARChive Server does not return an error,

but it also does not return the metadata for which the user does not have rights.

Reading entity content is an event that does not lead to a record in the audit trail.

3.3.7.6 Editing entity content

A request to log changes to the components of the instance of an entity is a demand that
IMiS®/ARChive Server save changes to the metadata in the request to its instance of the
entity in memory. A client can send multiple requests for editing an entity that is open for
writing. Changes are not saved to the database until the server receives a request to save the

entity.

A request contains:
e A reference to the entity instance (required).
e Alist of special system attributes and their values.
e Alist of attributes and their values (all attributes of the entity except for special system
attributes).

e Alist of any changed access rights (added, changed, deleted).

If a user changes an attribute that contains multiple values, all the values must be logged -
both those that have been changed and those that remain the same. When logging these
values, the system also partially checks the validity of the attribute values. For more

information see chapter Parameters.

On the server, multiple consecutive requests for editing in an entity that is open for writing can
be sent. In its reply to the request for changes, the server either gives an affirmative reply or
returns an error stating that the changes could not be made. The entity is physically saved on
the server once the method for saving has been called up. After a successful save, the entity

becomes accessible to other sessions.

The event in which the entity is changed does not lead to a record in the audit trail, any
changes are logged during saving, because changing an entity only changes the instance of the

entity in working memory, and these changes are not permanent.

3.3.7.7 Saving

A save request is a demand for IMiS®/ARChive Server to save an entity. An entity open for
writing is physically recorded in the database, and a write-proof copy is loaded in the cache.
For more information see chapter Entity instance. The request must contain (at least) a

reference to the entity instance.

When logging these values, the system also partially checks the validity of the attribute values.
For more information see chapter Parameters. The reason for the two-phase verification is
that the validity of all attributes cannot be checked when saving. A typical example is checking
for the presence of required attributes; this is not possible in an individual call to check an

instance.

In the process of saving, effective entity retention periods are checked, as well as whether the
entity represents a class, folder or document under class.

If the entity has no effective retention period, saving is not successful.

After an instance of an entity has been saved, the entity remains open in Read-Only mode,

and the client receives the entity’s unique internal identifier, which the client or application can
save to the data collections of third-party applications to directly call up the entity at a later
time. Following successful saving, changes to the entity are visible in every instance opened
following the saving. Instances opened before saving remain unchanged throughout their entire

life cycle.

Saving creates a record of the following events in the audit trail:
e “Change of attribute value”: if a change has been made to one or more system or special
attributes.
e “Change of access contral list”; if a change has been made to one or more records of
access rights.
e “Change of physical record attribute”; if a change has been made to one or more
attributes for physical records management.

o “Entity saved”.

3.3.7.8 Closing

A request for closing an instance of an entity is a demand for IMiS®/ARChive Server

to reduce the number of references to the entity instance by 1; if the counter of reference goes
to O, it deletes the instance in the cache.

A request for closing is also made for all instances of an entity in a session when the session is
closed, provided an explicit request for closing an entity instancel(s) has not been made.

The request must contain (at least):

¢ A reference to the entity instance.

Following the closing, the reference to the entity instance becomes invalid.
If an unsaved instance of an entity that was open in Write mode is closed, any changes will be

permanently lost. Closing does not lead to a record in the audit trail.

3.3.7.9 Move
The movement of an entity is triggered with a move request. Moving a document means
classifying the entity in a different part of the classification scheme; moving can therefore also

be called re-classification.

The request must contain (at least):
e The unique identifier of the entity the user would like to move.

e The unique identifier under which the user would like to classify the entity in the previous

sentence.

e A reason for the move.

Once an entity has been moved, IMiS®/ARChive Server checks the following conditions:

e The right to access the parent entity as determined by the security class.

The right to edit the entity being moved (adding system attribute values).

The right to move the entity being moved.

The right to add new child entities to the entity to which the moved entity is being moved

(new location).

The target entity where the entity being moved is being filed, must allow for the creation

of child entities using the template with which the entity being moved was created.

The target entity where the entity is being moved must not be closed.

If any of these conditions has not been met, IMiS®/ARChive Server will deny the move.
All child entities are moved along with the selected entity.

All the above listed conditions are also checked for the child entities.

Classification codes for the moved entities are recalculated in accordance with the rules

valid for the new location (chapter Classification codes) and have no connection to the old

classification codes. The user who performed the move is required to enter a reason for the
move.

The move event is recorded in the audit trail of the moved entity, and a record of the move
event is also created in all child entities moved together with the main entity.

The volume of data in the report in the audit trail differs depending on the entity being moved

and its child entities.

3.3.7.10 Changing the security class
Security class is changed when a client sends a request to change security class.

The request must contain (at least):
e The unique identifier of the entity.
e The new security class.

e The reason for the change.

Once the security class of an entity has been changed, IMiS®/ARChive Server checks the
following conditions:
e The right to access the entity as determined by the security class.
e The right of the user to change the security class in the entity.
e The right to use a security class equivalent to the user’s; the new security class must be
equal to or less than the user’s.

e The entity whose security class is being changed cannot be closed.

The server first checks if the operation to change the security class can be performed.

The new security class may not be greater than the security class inherited from the entity’s
parent entity. If the security class is raised, it is changed for the entity and for any of its child
entities with the same security class; in so much as the child entities have a lower security
class, they are unchanged. If the security class is lowered, the security class is changed to the

new value for all entities for which a security class has been explicitly specified.

When changing the security class, the server automatically fills in the attributes of the changes
of the security class in the entity for which a new security class has been defined:
e ‘“sys:SecurityClassChangeReason”: The reason for changing the security class is given by
the user; this data is required when changing the security class.
e “sys:SecurityClassChangeAgent”: The user who performed the change of the security
class.
e “sys:SecurityClassChangeDateTime”: The date and time of the change of the security
class.
e “sys:SecurityClassChangeFrom”: The value of the effective security class BEFORE the
change; it can be explicit or inherited.
e ‘“sys:SecurityClassChangeTo”: The value of the effective security class AFTER the changeg;

it can be explicit or inherited.

Every change of the security class that is either a direct change or a change as the result of an
entity’s child status is logged in the audit trail of the entity as a security class change event;

the record contains the old value, the new value and the reason for the change.

3.3.7.11 Deleting
The deletion of an entity is triggered with a delete request. The request must contain

(at least):
e The unique identifier of the entity.

o [f the entity’s sys:Description attribute does not have a value, one can be entered upon

deletion, as the description is required information when deleting an entity.

e The reason for the deletion.

Before an entity can be deleted, IMiS®/ARChive Server checks the following conditions:
e The right of the user to delete the entity.
e The presence of all required metadata: the sys:Description system attribute, which
becomes required in the event of deletion, is also checked.

e The sys:Significance system attribute is also checked,; if this value is set to 1 (“Vital”) or 2

(“Permanent”), deletion of the entity will not be possible.

The method of deletion can be set in the server so that:
e The integrity of the entity is maintained, that is, none of the entity’s components are
deleted (the Moreqg2 9.3.1 Specification).
e All metadata and content is deleted except for those required to maintain the

consistency of the deleted entity (the Moreg2 9.3.1 Specification).

In both cases, the entity is moved to the Deletion system class (classification code
C=sys”C=Trash”C=Deleted), where all deletions are collected.

As a result, the entity is “hidden” from all users.

Every deleted entity, regardless of the settings for the extent of the deletion, maintains the
following system attributes:

e sys:Title: The title of the entity.

e sys:Description: The description of the entity (this data is otherwise not required, but

becomes required in the event of a deletion).

When the user enters a description of the entity prior to deletion, the entity is opened in
editing mode, the attribute value is updated and the entity is saved. All these changes are

recorded by the audit log.

The server also automatically adds the following system attributes to the deleted entity:

int:Template: The original template with which the entity was created (hidden from user).

int:Parentld: The internal identifier of the parent entity where the entity was located

(hidden from user).

e sys:del:Reason: The reason for deleting the entity; this data is entered by the user and is
required when deleting an entity.

e sys:del:Agent: The user who performed the deletion.

o sys:del:DateTime: The date and time of the deletion.

e sys:del:ClassificationCode: The classification code of the entity prior to deletion.

e sys:del:Reference: Reference to the transferred entity. The attribute is empty if an
entitiy is deleted. It is used only for transferred entities in the review process.

For more information see chapter Beview process.

Warning: Once performed, a deletion is irreversible.

If the description of an entity is provided at the time of deletion, records of following events will
be logged in the audit trail:

e The opening of the entity in Write mode.

e The sys:Description system attribute was changed.

e The entity was saved.

The deletion event is logged in the audit trail of the deleted entity.

3.3.7.12 Changing status
A client can request a change of status.

The request must contain (at least):
e The unique identifier of the entity.
e The new value of the status.

e The reason for the change (not required).

Before the status of an entity is changed, IMiS®/ARChive Server checks the following

preconditions:
e The right of the user to change the status of the entity and any child entities.

e The parent entities of the entity whose status is being changed must be open.

The change of status can be broken down into three actions:
e (Opening a closed entity.
e C(Closing an open entity.

e Setting the inherited value in the open entity.

Opening a closed entity: Opening a closed entity causes only the entity in question to be

opened; its child entities remain closed. The new status is entered in the sys:Status system
attribute, and the date and time of the opening are entered in the sys:0Opened system
attribute; the sys:Closed value is deleted. The opening event is logged in the audit trail of the

open entity.

Closing an opened entity: Closing an opened entity causes the entity in question and all its open

child entities to be closed. The attribute sys:Closed is set for all closed entities using the
current date and time, and the new status value is recorded in the sys:Status attribute
(only for the entity in question; child entities inherit this value). A status change event is logged

in the audit trail of every closed entity.

Setting inherited values: If an open entity has an explicitly set status value, this action will give

it the inherited value from its parent entity. Because the content value of the status was not

changed for the entity in question, this action is not logged in the audit trail.

3.3.8 Audit trail

The audit trail is an undeletable chronological record of access, queries and changes made in
IMiS®/ARChive Server. The minimum information the audit trail contains is the user, the time
and the action performed on any document, folder or class in the classification scheme.

It is also a documented record about certain performed procedures.

The audit trail is completely inalterable throughout its entire life cycle.

In this regard, it is protected from both authorized and unauthorized interventions.

It provides a log of changes and an overview of procedures performed.

It is intended for the performance of activities on the archived objects.
The data in the audit trail are saved together with the archived records on the server.
For each user session, an audit session with a start and end is also logged.

All events contain a reference to this audit session.

3.3.8.1 Sessions
When a session is opened in IMiS®/ARChive Server an audit session is also opened.
When the audit session is opened, the following information is recorded in the database:
e The user account of the user who logged in.
¢ The hostname of the computer from which the session was launched.
e The date and time of the start of the session.
¢ The internal network address (the internal IP address of the network interface from
which the session was launched; it is provided by the client in the authentication data).
e The public network address (the network address of the client as seen by the server).
e The date and time of the end of the session.
e The reason for ending the session:
- Session was not closed (0)
- Normal session end (1)
- Unexpected termination of the session by the client (2)
- Time-out (3)
- Improper authorization (4)

- Improper request (5).

Once this data has been logged, the server assigns the session a unique identifier which
remains the same for the duration of the session and which is used to log every event detected
and launched in the framework of the session; it becomes linking data for data about the

session and data about all events in the session.

3.3.8.2 Events

Every access to the server is logged as an event in the audit trail.

In every record of an event in the audit trail, the following parameters (minimum) are logged:
e Unique audit session identifier.
e Event type.

e Date and time of the event.

The audit trail allows the following non-required parameters to also be saved; they are provided
by the client when an action is performed:
e Reason for action: can have a “printf” format message in the parameter

(http://en.wikipedia.org/wiki/Printf format string).

e Reason for action parameters: if the reason contains parameters, the content of the
parameters in the print out of the action are merged with the reason for the action in a

uniform message.

The following events are automatically logged in the audit trail:

New entity [1]

This event is logged in the audit trail whenever a user creates a new entity.

For more information see chapter New entity.

Because the entity requires a unique identifier, which at this point is not available (it is assigned
during saving), the event is physically recorded in the database only when it is saved with the

time of the saving, at the same time as the entity saving event.

The reason for using this logging model for this type of event is also connected to the fact that
before saving, the entity does not actually exist, and it only begins to exist on the server once it

has first been saved.

The following are recorded in the audit trail report:
e Unigue identifier of the entity.
o Reason/message from the user when an entity is created (not required).

¢ Reason/report parameters (not required, required if a reason/report with parameters is

present).

Opening an entity in Read-Only mode [2]

This event is logged in the audit trail each time a user opens an entity in Read mode.

For more information see chapter Opening an entity in Read-Write or in Read-Only mode.

http://en.wikipedia.org/wiki/Printf_format_string

The following are recorded in the audit trail report:

Unique identifier of the entity.
Reason/report from user for opening the entity (not required).
Reason/report parameters (not required, required if a reason/report with parameters is

present).

Opening an entity in Head and Write mode [3]

This event is logged in the audit trail each time a user opens an entity in Write mode.

For more information see chapter Opening an entity in Read-Write or in Read-Only mode).

The following are recorded in the audit trail report:

Unique identifier of the entity.
Reason/report from user for opening the entity (not required).
Reason/report parameters (not required, required if a reason/report with parameters is

present).

Entity saved [4]

This event is logged in the audit trail when the entity is saved (chapter Saving).

The following are recorded in the audit trail report:

Unique identifier of the entity.
Reason/report from user for saving the entity (not required).
Reason/report parameters (not required, required if a reason/report with parameters is

present).

Entity moved [5]

This event is logged in the audit trail when the entity is moved (chapter Move).

For each movement of an entity (movement of a branch of entities can lead to multiple

movements) an event is logged in the audit trail.

The following are logged in the audit trail report:

Entity status.

Full old classification code.

Full new classification code.
Values of all contained attributes.

Reason/report from user for moving the entity (not required).

Deleting an entity [B]

An event is logged in the audit trail when an entity is deleted. For more information see chapter
Deleting. Required information about the reason for the deletion is entered in both the specific

attribute for this purpose and in the audit trail.

The following are logged in the audit trail report:
e Uniqgue identifier of the entity.
o Reason/report from user for deleting the entity (not required).

¢ Reason/report parameters (not required, required if a reason/report with parameters is

present).

Audit trail query [7]

This event is logged in the audit trail every time a query is made for an entity in the audit trail.

The following is logged in the audit trail report:

e Search term created by the server on the basis of the user’s query.

Change audit trail settings [8]

This event is logged in the audit trail when the server detects that audit trail settings have
been changed during server off-time (by directly manipulating settings record).

Because changes to the settings of the audit trail can only be made when the service is not
running, this check of the identity of the previous and new audit trail settings is performed
when the audit trail starts up.

The audit trail report records the settings that were changed and all settings.

Changed settings are marked with a *.

Example: The following are logged in the audit log:

e [Fnabled state changed to on*,

o Global required audit log parameters settings changed. UserName: on* ComputerName: on,
PrivateAddress. on, Reason. on.

o Fvents settings changed. AuditLog.Query: on* Entity.Create: on*, Entity.OpenReadOnly: on*,
Entity.OpenRead\Write: on* Entity.Update: on*, Entity.Move: on* Entity.Delete: on*,
Entity. ACLChange: on*, Entity.PropertiesChange: on*, Entity.PhysicalRecordsManagementChange:
on*, Entity.SecurityClassChange. on*, Entity.StatusChange: on*, Entity.Disposed: on*,
Entity.Permanent: on* Entity. Transferred: on*, Entity.Reviewed: on*, Content.OpenReadOnly: on*,
Content.OpenReadWWrite: on*, Content.Create. on* Content.Delete. on* Content.Update. on*,

Content.MetadataChange. on*,

The logging of this event prevents abuse, for example, an administrator with access to the

server configuration could change the temporary server settings.

Example: Turning off the audit trail for the duration of one query.

Change attribute value [9]

An event is entered in the audit trail when an entity is saved, that is, when the value of one or

more attributes is changed. For more information see chapter Editing entity content and

Saving). Physical record management attributes are listed in their own event and this event is

not logged.

The following are logged in the audit log:
¢ Unique identifier of the entity.

e List of all attributes that have been changed.

Changing the Access Control List [10]

An event is entered in the audit trail when an entity is saved if the Access Control List (ACL)

has been changed. For more information see chapter Editing entity content and Saving).

The server checks and compares the existing Access Control List with the new one and looks

for differences.

If a change has occurred, both lists are logged in the audit trail: the old one and the new one.
If a new entry was added to the list, only this entry is recorded, as there is no old value.

If a record is deleted from the access contral list, only the old record is recorded,

as there is no new value.

The unique identifier of an attribute is logged whenever the Access Control List is changed for

that attribute.

The following are logged in the audit log:
¢ Unique identifier of the directory entity - user or group.
e (ld status of the record in the Access Control List.
¢ New status of the record in the Access Control List.
e Unique identifier of the attribute - if the record in the access control list pertains to an

attribute.

Changing physical record management attributes [11]

An event is entered in the audit trail when an entity is saved. For more information see chapter

Editing entity content and Saving). An event is logged only if at least one physical record

management attribute has been changed.

The following are logged in the audit log:
e Unigue identifier of the entity.

e All changed and unchanged physical record management attributes and their values

before and after the change.

Changing the security class [12]

This event is logged in the audit trail every time the security class is changed.

For more information see chapter Confidentiality (Security Class).

The following are logged in the audit log:
e (Old security class.
¢ New security class.

e Notes.

Changing entity status [13]

This event is logged in the audit trail every time an entity’s status is changed.

The following are logged in the audit log:
¢ New status value.

e Reason (nhot required).

Changing retention policies and dispasition holds in the review process [14]

This event is recorded in the audit trail when effective retention policies and additional or

removed entity holds are changed in review process.

The following titles are logged in the audit log:
e Added retention policies
o Removed retention policies
e Added holds

¢ Removed holds.

Opening content in Read mode [17]

This event is recorded in the audit trail when content is opened in Read mode

For a detailed account of content see chapter System attributes - sys:Content.

The following are logged in the audit log:
e (Content identifier.
e Description of content (if one exists).

e Reason for the change (not required).

Opening content in Write mode [18]

This event is recorded in the audit trail when content is opened in Write mode.

The following are logged in the audit log:
e Content identifier.
e Description of content (if one exists).

e Reason for the change (not required).

Creating content [19]

This event is recorded in the audit trail when content is created.

The following are logged in the audit log:
e Content identifier.
e Description of content (if one exists).

e Reason for the change (not required).

Deleting content [20]

This event is recorded in the audit trail when content is deleted.

The following are logged in the audit log:
e (Content identifier.
e Description of the content (if one was present at the time of deletion).

e Reason (not required).

Saving content [21]

This event is recorded in the audit trail when edited content is saved.

The following are logged in the audit log:
e Content identifier.
e Description of content (if one exists).

e Reason (not required).

Changing content metadata [22]

This event is recorded in the audit trail when content metadata is changed

(description is changed).

The following are logged in the audit log:
e Content identifier.
¢ New description of the content (if one is present).

e Reason (nhot required).

Entity disposition [23]

This event is recorded in the audit trail when an entity is disposed in the review process.

The following are logged in the audit log:
e Reason for disposal.

e Comment (not required).

Permanent entity retention [24]

This event is recorded in the audit trail when the entity is checked as permanent in the review

process.

The following are logged in the audit log:
e Reason for permanent retention.

e Comment (not required).

Entity delivery [25]

This event is recorded in the audit trail when the entity is delivered in the review process.

The following are logged in the audit log:
e Reason for delivery.

e Comment (not required).

Omitted for the next review [26]

This event is recorded in the audit trail when the entity is dropped in the review process.

The following are logged in the audit log:
e Reason for omission.

e Comment (not required).

3.3.8.3 Right to view the audit trail

A user can perform audit trail queries if they have the right to view the audit trail. A user either
has the right to view the entire audit trail or they do not. This right is obtained by assigning the
AuditLogQuery role. Viewing the audit trail results in an XML file

For more information see chapter Beport format.

3.3.8.4 Query
When making a query, a user can use the following search parameters to limit the results to

events that are of particular interest to them:
e FEvent date range.
e |P address range (for example, from 192.168.1.1 to 192.168.1.99).
e List of IP addresses.
e List of user names.
e List of names of computers used to access the system.

e List of encoded unique entity identifiers.

If the search parameters are not selective enough and return too many results, the server
returns an error. If this occurs, the user is advised to repeat the query with more precise or
different search parameters. The easiest way to limit the range of results is to the shortest
range of dates possible.
Search parameters can also be combined, but there are limits.
Auditlog query condition can always contain a date-time range condition.
One additional parameter can also be selected from the following list:

e Range of IP addresses.

e List of IP addresses.

e List of user names.

e List of names of computers through which the system was accessed.

IMiS®/ARChive Server Manual Version 9.9.1810

Viewing the audit trail results in an XML file. For more information see chapter Report format.

3.3.8.5 Report format

The report created on the basis of data in the audit trail is crucial for reconstructing the
events that led to a change of archived records at any point in the life cycle - from their
creation to the viewing of the audit trail. In the absence of an audit trail, it is practically
impossible for an authorized person to conduct an audit based on subjective evaluations of
circumstances and events.

The results of the overview of the audit trail are provided to the client who performed the
overview in the form of an XML file. The file is assembled in accordance with the XSD scheme
standards included in IMiS®/ARChive Server. The XSD scheme is also available at

http://www.imis.si/imisarc/auditlog.xsd.

Example: The XML record contains the results of an audit trail query

<?xmlversion="1.0" encoding="UTF-8"?>
<auditlog.query.resultset xsi.schemal ocation="http.// Www.imis.si/imisarc
http://www.imis.si/imisarc/auditlog.xsd"” xmins="http.//www.imis.si/imisarc"
xmins:xsi="http.//www.w3.org/2001/XMLSchema-instance ">
<sessions>
</--Audit query sessions.-->
<sessionid="3" closureReason="2" address="192.168.92.77"
internal address="192.168.92.77" dateTimeOpened="2014-04-23T14:51:382"
dateTimeClosed="2014-04-23T14:54:002" username="jnovak" computerName="novak-

pc'/>
<sessionid="4" closureReason="2" address="192.168.92.23"
internal address="192.168.92.23"

dateTimeOpened="2014-04-23T714:54:257" date TimeClosed="2014-04-23T715:33:10Z7"
username="fkovac" computerName="kovac-pc'/>
<sessionid="23" closureReason="0" address="192.168.92.77"
internal address="192.168.92.77" dateTimeOpened="2014-04-23T14:54.257"
username="jnovak" computerName="novak-pc'/>

<sessions>

<events>

</--Audit query events.-->

</--Sort compare function is QuerySorter::CompareSESS T5-->
<eventseq="0" sessionld="23" type="2" dateTime="2014-04-24T10:01.477"
classificationCode="C=01"
context="00=R}rSc’"8It;N3Z0RdCGJgtf&z2iB ~aWgCl+MelYx"/>
<eventseq="1" sessionld="3" type="1" dateTime="2014-04-23T7T14.51.432"
classificationCode="C=01"
context="00=R}rSc’&It;N3ZQRdCGJIqgtf&z2iB ~aWgCl+MelYx"/>
<eventseq="2" sessionld="3" type="4" dateTime="2014-04-23T14.51:432"
classificationCode="C=01"

2018 © Imaging Systems, Inc., All rights reserved. 113

http://www.imis.si/imisarc/auditlog.xsd
http://www.imis.si/imisarc%20http:/www.imis.si/imisarc/auditlog.xsd
http://www.imis.si/imisarc%20http:/www.imis.si/imisarc/auditlog.xsd
http://www.imis.si/imisarc

IMiS®/ARChive Server Manual Version 9.9.1810

context="0D=RrSc"&It; N3ZLARdCGJqgtf&zBiB ~aWgCl+MelYx"/>
<eventseq="3" sessionld="3" type="10" dateTime="2014-04-23T714.51:432"
classificationCode="C=01"

context="0D=R}rSc"&It; N3ZLRdCGJIqgtf&z2iB ~alWgCl+MelYx"
message="\Values for the following properties have changed.sys:Creator, sys.Opened,
sys:Owner, sys:Status, sys.Title"/>
<eventseq="4" sessionld="4" type="2" dateTime="2014-04-23T14:54.262"
classificationCode="C=01"
context="00=RrSc"&It; N3ZLARdCGJqgtf&zBiB ~aWgCl+MelYx"/>

</events>
</auditlog.query.resultset>

The XML files is made up of two sets:
e “Sessions”

e “Events”.

3.3.8.5.1 Information about sessions: “Sessions”
“Sessions” contain a list of all sessions within which any of the searched events were launched.
List of session data:

e Unique session identifier (ID).

e Reason for closing the session (closureReason); a list of possible reasons for closing a

session in the XSD format is available at http://www.imis.si/imisarc/auditlog.xsd.

e Public IP address (address).

e Private IP address (internal_address).

¢ Name of computer (computerName).

e Date and time the session was opened (dateTimeOpened).
o Date and time the session was closed (dateTimeClosed).

e Unique user account identifier - user (username).

If the session has not been closed, the value of the reason for closing the session will be equal
to 0 and the time of closing will be unspecified. This occurs when a session is still active or

(theoretically speaking) the server was stopped in an uncontrolled manner during the session.

2018 © Imaging Systems, Inc., All rights reserved. 14

http://www.imis.si/imisarc/auditlog.xsd

3.3.8.5.2 Information about events: “Events”
“Events” contain a list of searched events and their data.
List of event data:

e Sequence of the event in the list (seq).

e Session identifier (sessionld); a reference to the session during which the event was

launched.
e FEvent type (type).
e Time of the event (dateTime).
e (lassification code of the relevant object (classificationCode).
e Encoded unique entity identifier (context).

e Message/reason for the action (message).

3.3.9 Retention periods
Retention periods represent a time frame in which the archive system must retain entities.
When the time frame passes, a decision is made what will happen with retained entities in the

review process.

Each retention period contains the following attributes alongside the mandatory attributes

that are key for its operations in the review process:

e the »sys:ret:pol:Trigger« attribute represents a search string to determine a time frame

of a retention period. For more information see chapter Search syntax rules.

e the »sys:ret:pol:Action« attribute represents the default action for entities that will

become the subject of review when the retention period will have passed.

Each entity in the classification scheme (except the document in the folder) needs at least one
defined retention period. By establishing connections between entities and retention policies,
effective retention periods are monitored and so is the preparation of the review process,
though indirectly.

The disposition hold has a special role in the review process. It enables a disposal from the
process of preparation of all entities that are connected to at least one hold.

In the process of implementation, a selected action is not implemented for such entities.

As with retention policies, holds are managed through connections that are described below.

3.3.9.1 Managing disposition hold connections

Connect the disposition holds to the entities when you want to hold them from the review
process. A disposition hold can be connected to all types of entities that can be also connected
to retention polices. It applies to an entity to which it is connected and to all contained entities
regardless of effective retention policies. It is valid until it is cancelled or until the connection is

deleted.

Example: For an example, take a folder with a contained folder »F=2017-00071"F=00001« that is in the
decision of the review process. Due to an event (e.g., a lawsuit), the »F=2017-00011« folder is key
documentation that must not be destroyed during the process. In this case, bind the disposition hold to
the »F=2017-00011« folder. By doing so, we make sure that the folder with a contained folder is disposed
from the review process. Also, the folder with a contained folder will not be a subject to the preparation

of the review process until there is still an existing connection to the disposition hold.

3.3.9.2 Managing retention policies connections

The following parameters can be specified when connecting retention policies to the entities:
o \Whether a policy is enabled or disabled.
e Types of entities the retention policies affect (class, folder, document classified directly

under a class).

Effectiveness of retention policies of individual entities is monitored with these parameters.
Effective retention policies are a set of explicit and inherited retention policies that tell us
which policies effectively affect the review process of individual entities.
The order of importance of retention policy connections when calculating effectiveness is the
following:

1. Explicit connections

2. Inherited connections.

Effective retention periods are calculated in the following way:
e Retention policy connections from the entire branch of entities (all parent entities) are
reviewed. With hierarchy in mind, it is checked which retention policies affect the current

type of entity for which they are calculated. Inherited retention periods is the result.

e Explicit connections to the retention policies that are joined with inherited retention
policies are checked for the entity in question. Effective retention periods that apply to

this entity are the result.

Examples. The table below shows an example of a retention policy configuration.

Retention policy Time frame
5 years 5 years since entity creation
10 years 10 years since entity creation

Table 6: Example of a retention policy configuration

We have the following classification tree:

=3500

=3800"C=53501
C=3300"C=83301"F=2017-00100

=3800"C=3301"F=2017-00107
C=35300"C=83301"F=2017-00102
C=3300"C=33072
C=3300"C=3302"D=1000
C=3300"C=3302"D=1001

The main class is »C=3300« and it contains two classes, »C=3301« and »C=3302«. The contained class
»C=35301« contains folders »F=2017-00100«, »F=2017-00101« and »F=2017-00102«, The contained class
»C=8302« contains documents »D=1000« and »D=1001x.

Example 1: In the main class »C=3300«, the bound »5 years« retention policy is enabled for classes,
folders and documents classified directly under classes. All entities in the tree are covered with this

configuration as the retention policy is inherited to all types of entities in the tree.

Example 2: Change the configuration from Example 1 so the »5 years« retention policy is enabled for
classes and folders. Such a configuration is invalid as the retention policy is inherited to all types of
entities in the tree except documents under a class because they do not have explicit connections to

the retention policies.

Example 3: Add an explicit connection for the »10 years« retention policy to the contained class
»C=3302« and enable it for documents. At the same time, enable the »5 years« retention policy for
classes and folders in the class »C=3300«. Such a configuration is appropriate as the »5 years«
retention policy applies to all classes and folders, whereas the »10 years« retention policy is valid only for

documents in the contained class »C=35302x«.

Example 4: Connect the »10 years« retention policy to the class »C=3300« and enable it for classes and
documents. Connect the »5 years« retention policy to the contained class »C=3301« and enable it for
folders. Such a configuration determines that subjects will be selected according to the »5 years«
retention policy, whereas classes and contained classes with documents will be selected according to

the »10 years« retention policy.

Example 5: Connect the »10 years« policy to the class »C=3300« and enable it for classes and
documents. Connect the »5 years« policy to the same class and enable it for folders. Such a
configuration enables selection of all folders within the class according to the »5 years« retention policy,

and class and document selection under them according to the »10 years« retention policy.

Example 6: Connect the »10 years« policy to the class»C=3300« and enable it for classes, folders and
documents. Connect the »10 years« retention policy to the contained class »C=3307« and disable it for
classes and folders. At the same time, connect the »5 years« retention policy and enable it for classes
and folders.

With such configuration, you can select classes, folders and documents under classes with the »10
vyears« retention policy except the subclass »C=33071« which has a disabled »10 years« retention policy.

However, it has an enabled »5 years« retention policy for classes and folders.

Example 7: Connect the »10 years« retention policy to the class »C=3300« and enable it for classes,
folders and documents. Then connect the »5 years« retention policy to the contained class »C=3307«
and enable it for folders. Configuration is valid as all types of entities have effective retention policy in the
tree, however folders in the contained class »C=3301« are in conflict as both retention policies are
inherited (the »10 years« policy is inherited from the main class »C=3300« and the »5 years« policy from
the contained class »C=3301¢«). In the case of selection to one or both retention policies, folders will

always be present due to the conflict.

Example 8: Connect the »10 years« retention policy to the class »C=3300« and enable it for classes,
folders and documents. Connect the »10 years« policy to the folder »F=2017-00100« and enable it for
folders. At the same time, connect the »5 years« retention policy to the same folder and enable it for
folders. Follow the same procedure for folders »F=2017-00107« and »F=2017-00102«. With such
configuration, you can select folders according to the »5 years« retention policy, and classes and

documents under classes according to the »10 years« retention policy.

Example G: Connect the »10 years« retention policy to the class »C=3300« and enable it for classes,
folders and documents. Connect the »10 years« policy to the contained class »C=3302« and disable it for
documents. The configuration is invalid as documents in the contained class do not have effective

retention policies.

If you bind, for example, the »5 years« retention policy to both documents in the contained class and
enable it for documents, then you can disable the »10 years« retention policy for documents in the

contained class »C=3302« as all documents in the subclass have at least one effective retention policy

Example 10: The following configuration is in the entity tree: the enabled »10 years« policy /s bound to the
class »C=3300«. The »5 years« policy is bound to the contained class »C=33071« and it applies to folders.
The »5 years« policy is also bound to the contained class »C=3302« and it applies to documents.

You want the »10 years« policy to apply to all entities in the tree of entities. The easiest way is to enable
the »10 years« policy to the »C=3300« class for classes, folders and documents. This causes a confiict for
folders and document, but it can be solved by removing the connections to policies on the subclasses
»C=3301« in »C=835302«. At the same time, the policy configuration on the »C=3300« class covers the

entire tree of entities with the »10 years« retention policy.

3.3.10 Content management
In addition to metadata, content is an important part of the entity's integrity. In addition to
creating, changing and deleting it, content can also be managed in the following ways:

e automatic content conversion;

e performing other actions.

3.3.10.1 Automatic content conversion
Automatic content conversion is a process in which multiple representations of a specific
content type are created, but in different formats. This way we can convert BMP images to
TIFF format or MS Word documents to PDF/A. All automatically generated content depends on
the original content, which is why certain limitations apply to it:

e Deleting content with dependent content is not allowed unless all dependent content is

explicitly deleted as well.
¢ Moving and editing dependent content is not allowed, unless the content is detached and

made independent.

Automatic content conversion is performed with plug-ins that are connected into sequences

using configuration. Sequences are then run on the server and generate dependent content.

IMiS®/ARChive Server Manual Version 9.9.1810

An example of a configuration sequence.

<nsT:Converter xsitype="ns1.ConverterSettings">
<ns’.ld xsi:type="xsd.string ">c6d25a2e-flea-40ba-9267-39e4cEb/Lef1</ns1:1d>
<ns1.SourceQperation xsi.type="ns1:ContentSourceOperation">None</ns1:.5ourceOperation>
<nsT.Filter xsitype="ns1:ContentTypeFilter" disposition="Include">
<ns1.ContentType xsitype="xsd:string " ">image/bmp</nsi.ContentType>
</nsT:Filter>
<ns1.0Output queueForFTI="true"” nextConverterld="c3287e/1-068a-4ec5-9277-985303f810de"
descriptionExpression="%DESC BASE%-
BINOW HOUR%.: %NOW MINUTE%: %NOW SECOND%.jpg ">image/jpeg</ns1.0Output>
<nsT:Provider xsi:type="ns1:ServiceProvider" id="lmageMagic-BMP" type="Plugin"
driver="libiaconvim.so.1">
<nsT:Arguments
xsi:type="xsd:string">&It; WorkDirectory>/iarc/work/conversion⁢/WorkDirectory></ns1.Arguments>
</ns1:Provider>

</ns1:Converter>

<nsT:Converter xsitype="ns1.ConverterSettings">
<nsT:d xsi:type="xsd:string ">c3287e71-068a-4ec5-9277-985303f810de</ns1:1d>
<ns1:SourceOperation xsi.type="ns1:ContentSourceOperation">None</ns1.SourceOperation>
<nsT:Filter xsi:type="ns1.ContentTypeFilter" disposition="Include"/>
<ns1:5cope xsitype="nsT:Entityld" type="ClassificationCode">C=61</ns1:5cope>
<ns1:0utput queueForFTI="true ">image/tiff</ns1.0utput>
<nsT1.Provider xsi:type="ns1:ServiceProvider" id="ImageMagic- TIFF" type="Plugin”
driver="libiaconvim.so.1">
<nsT:Arguments
xsiitype="xsd:string ">&/t;WorkDirectory>/iarc/work/conversion&It;/WorkDirectory></ns1:Arguments>
</ns1.Provider>

</ns1:Converter>

A seguence consists of two plug-ins. The first plug-in (id: c6d25a2e-flea-40ba-9267-
39e4cBb72ef1) first converts BMP to JPEG, and then the second plug-in converts JPEG to
TIFF. The results of the conversion are three interdependent files (JPEG is a representation of

BMP, TIFF is a representation of JPEG).

2018 © Imaging Systems, Inc., All rights reserved. 120

Below is a detailed description of individual labels and attributes of the configuration XML.

Label »nld«: The label contains a unique plug-in identifier.

Label »SourceOperation«: The value of the label represents an operation that will be

performed after the successful conversion of the original content.

The following table contains valid values and their descriptions.

Value Description
NONE The original content remains intact.
DELETE The original content is deleted.
REPLACE The original content is replaced with the newly generated content.

Table 7: Values of the "SourceOperation" label

Label »Filter«: The value of the label represents an input list of MIME types that the plug-in

can convert (the value of the »disposition« attribute is »Include«) or for which the plug-in

doesn’t have support (the value of the »disposition« attribute is »Exclude«). If the value of the

»disposition« attribute is »Include« and the list is empty, then such plug-in is not configured as

an input plug-in in the sequence.

Label »Output«: The value of the label represents the MIME type of the converted content.

The following table contains the label attributes and their descriptions.

Attribute

Description

queueForFTI

The value »True« means the newly generated content will be
indexed so it will later enable search by content.

The value »False« means the label will not be indexed.

nextConverterld

The value is a unigue plug-in identifier, which will perform the
content conversion next. If the attribute is not present,

the conversion sequence ends.

descriptionExpression

The value represents the content description that will be
generated by the plug-in.
If the attribute is not present, the description matches the
description of the original content. The following are the
reserved description words:
e %PAGE_COUNT% - the word is replaced with the
number of pages of the converted content.
e %DESC_BASE% - the word is replaced with the
description of the original content without the ending
(the ending is considered everything after the last dot in
the original description).
e %DESC_EXT% - the word is replaced with the ending
(the dot is included) from the original description.
e %DESC% - the word is replaced with the original content
description.
e %NOW_YEAR% - the word is replaced with the year of
the current conversion date.
e %NOW_MONTH% - the word is replaced with the month
of the current conversion date.
o %NOW_DAY% - the word is replaced with the day of the
current conversion date.
e %NOW_HOUR% - the word is replaced with the hour of
the current conversion time.
e %NOW_MINUTE% - the word is replaced with the minute
of the current conversion time.
e %NOW_SECOND% - the word is replaced with the

second of the current conversion time.

Table 1: Attributes of the "Output" label

Label »Provider«: The values of the label are the arguments that the individual plug-in needs

for content conversion. The following table shows label attributes and their descriptions.

Attribute Description
id Plug-in identifier
type Plug-in type — the value must be »Plug-in«
driver The name of the file with the plug-in

Table 2: Attributes of the "Provider" value

3.3.10.2 Performing other actions
In addition to the actions described above, we can also perform the following actions with the
entity’s content:

¢ Moving content (Move).

e Detaching dependent content (Detach).

e (Cloning content (Clone).

¢ Implementing indexing (Index) and automatic content conversion requests (Convert).

Moving content: Content can be moved between entities. The condition is that the content is

independent, and the move is performed between the attributes of the same type. The original
entity must be opened in the editing mode. The user must have the right to edit target entities,
since target entities are implicitly opened in the editing mode when moving content. Content is

actually moved when the original entity is stored.
Detaching dependent content: Dependent content, which is a result of an automatic
conversion, can be detached. This way we get independent content with all properties of any

other independent content.

Cloning content: Content can be cloned between entities.

The following conditions must be met:
e (Content is cloned between attributes of the same type.
e The source entity is open in Read mode.

e The target entity is open in Edit mode.

The cloning of content is performed on saving the target entity.

Implementing content indexing requests: The requests for indexing of any content

(dependent or independent) can be implemented. The entity that contains the content must be
opened in the editing mode. The user must have a »ContentManagement« role, or else the

content indexing request is rejected.

Implementing automatic content conversion requests: The automatic content conversion

request can be implemented by a user with a »ContentManagement« role. The content must be
independent, and the entity must be opened in the read-only mode. Otherwise, the automatic

content conversion request is rejected.

3.3.11 References

References represent symbolic connections between entities. References can be used to
interconnect different entities. The basic condition for establishing a connection is that the
user has the effective »Read« and »Create reference« right on all the entities he wants to

connect. For more information see chapter Access rights for an entity. References can be used

to connect entities that are classified under different folders but have similar contents or
other similar characteristics, and as such represent a whole. Connections between entities
can be added and removed;

the condition for the existence of a reference is that at least two entities are interconnected.

If the connected entities are deleted, the references are automatically deleted too.

3.3.12 Categories

Categories enable additional sorting of entities contained in views (search result, list of
contained entities, etc.). When creating a view, the user can define which attributes will be
used for categorization. Their values are then used as categories.

A special attribute intended for categorization is »sys:Category«, but other attribute types that
are not the »File«, »StringMax« or »Binary« type can also be used (chapter Types).

Categories can be nested; the separation character for nesting categories is »\«.

The entities that do not match a specific category in the categorization process are classified
under a special category called »Uncategorized«. Thus, one entity can be present in different
categories and be simultaneously classified under the category »Uncategorized«.

There are several reasons for this; the most common one is that the entity doesn’t have any
categorization attributes or that the categorization attributes are empty. Various examples of

entity categorization are given below.

Example 1. We have 4 documents with the keyword values »KO1« and »KO1\07«, as shown in the following

table. Categorization is performed based on the keyword value.

Documents 1 and 2 are categorized under the category »KO7«, while documents 3 and 4 are categorized

under the subcategory »KO7\01«.

Entity name

Keyword values

Document 1 KO1
Document 2 KO1
Document 3 KOTN\O1
Document 4 KOTN\O1

Table 8: Categorization (Example 1)

Example 2: We have 4 documents with the keyword values »KOT«, »KOP« and »KO7\01«, as shown in the

following table. Categorization is performed based on the keyword value. The categorization result is 3

categories:

e (Category »KOT«: this category contains documents 1and 2.

o (Category »KOZ«: this category contains document 1.

o Subcategory »KOT1\01«: this subcategory contains documents 3 and 4.

Entity name

Keyword values separated by »,«

Document 1 K01, K02
Document 2 KO1
Document 3 KOTN\O1
Document 4 KOTN\O1

Table 9: Categorization (Example 2)

Example 3: We have 4 documents with the keyword values »KO7«, »KOT\07« and »KOZ«, as shown in the

following table. Based on the keywords, the categorization result is as follows.

o (Category »KOT«: this category contains all documents. It is present in the keywords of all

documents.

o (Category »KOZ«: this category contains document 1.

o Subcategory »KOT1\01«: this subcategory contains documents 3 and 4.

Entity name Keyword values separated by »,«
Document 1 K01, K02

Document 2 KO1

Document 3 KO1, KONO1

Document 4 KO1, KONO1

Table 10: Categorization (Example 3)

Example 4: We have the 4 documents from the previous example and delete the keywords for document

1 as shown in the following table. The result of the categorization by keywords is the following:

Category »KO1«: this category contains documents 2, 3 and 4.
Subcategory »KO1\01«: this subcategory contains documents 3 and 4.

Category »Uncategorized«: this category contains document 1.

Entity name Keyword values separated by »,«
Document 1 /

Document 2 KO1

Document 3 KO1, KOT\O1

Document 4 KO1, KONO1

Table 11: Categorization (Example 4)

Example 5: The documents from the previous example are categorized by keywords and by the attribute

»sys:Category«, which all documents have and which has no value. The categorization result is the

following:

Category »KOT«: this category contains documents 2, 3 and 4.
Subcategory »KOT\01«: this subcategory contains documents 3 and 4.

Category »Uncategorized«: this category contains all documents because no values have been set

for the attribute »sys:Categoryx.

Example B: We have the 4 documents from the previous example with the attribute values

shown in the following table. The result of the categorization by attributes is the following:

e (ategory »KO1«: this category contains documents 2, 3 and 4.

e Subcategory »KO1\01«: this subcategory contains documents 3 and 4.

e (Category »CATO1«: this category contains document 1.

o (Category »Uncategorized«: this category contains all documents. The reason for this is

that document 1 can’t be categorized by keywords, while documents 2, 3 and 4 can’t be

categorized by the attribute »sys:Category«.

Entity name

Keyword values

(separated by »,«)

Values of the attribute

nsys:Category«

Document 1 / CATO1
Document 2 KO1 /
Document 3 KO1, KOT\O1 /
Document 4 KO1, KON\ O1 /

Table 12: Categorization (Example B)

3.4 Classification

Documentation classification is an irreplaceable tool even for traditional document
management, that is, for paper documents.

The same is true for digital management and electronic archives. A documentation
classification scheme must be established in advance for the needs of classification in

IMiS®/ARChive Server.

The scheme enables the following:
e Structuring, breaking down and sorting documentation by content, authorizations,
activities and business and professional functions.
e Setting documentation storage dates.
e Defining the archive records, forms of documentation and metadata structure added to

folders and documents, including the management of records on physical records.

The server enables the user to set up a classification scheme with a practically limitless
number of dimensions. It does not limit the possible number of class levels or the number of
subclasses in individual classes. The number of class levels in different parts of the archive can

vary.

The classification scheme is the basis for overseeing access to individual parts of the archive

and is represented in the archive by a hierarchy of entities of the class type.

3.4.1 Classification codes
Every entity in the archive has its own full classification code, which is unique throughout the
entire archive. It is assigned when an entity is created and cannot be changed unless an entity

is moved in the archive (re-classification).

The full classification code of a class consists of the full classification code of the parent class
and the code that unique only to this entity. A separator can optionally be added; the separator
is uniformly used throughout the archive and is set by the archive administrator in the server

settings (“.”, for example).

The full classification code of a folder consists of the full classification code of the class where
the folder is classified. A uniqgue code is added to the folder within this class. A separator can
optionally separate the two components; the separator is set by the archive administrator and
can be different than the one that separates class levels. It is set by the archive administrator
in the server settings (", for example).

The full classification code of a document consists of the full classification code of the folder and
class to which the document belongs. A unique identifier for the document within the parent
entity is added to this. A separator can optionally appear before this code; it is set by the
archive administrator and is intended for separating the components of a document in full
classification codes. It is set by the archive administrator in the server settings

(“/”, for example).

IMiS®/ARChive Server automatically generates classification codes when new entities of all

types are added. For more information see chapter Classification codes.

If a classification code has not been automatically assigned to the entity (as per the settings of
an individual entity for its child entities) the server will deny the request for creating a new
entity. It does this if a classification code value has not been added to the request or if the

submitted classification code is not unique to the new entity within the parent entity.

3.4.2 Classification scheme settings
A detailed and practically finite classification scheme must generally be set during the initial
configuration of IMiS®/ARChive Server or at least prior to use.

The administrator adds all required classes to the hierarchy of the classification scheme.

Before adding classes, the following steps must be taken:
e Templates must be created for the new classes. For more information see chapter

Templates).

e Settings for automatic classification code generation must be entered (as needed).

Before folders and documents are created, the following must be prepared:
e Templates for files in end classes (classes without subclasses).

¢ Templates for documents that will be created in the folders or directly in the classes.

Templates are used to define:
¢ Metadata required for individual entities.
e Metadata that can be entered.
¢ Metadata where multiple values can be set for the same entity.

e (Other properties of the entity.

Each template can specify which templates can be used to create child entities in the entity
created using the template. Templates that can be used to create child entities can also be
directly specified in already existing archive entities. So, classes in the last level of classes in
the archive usually contain folders, and can exceptionally also contain free-standing
documents. Every class can always contain only one type of entities, that is, only subclasses or

only folders or only documents.

Precisely preparing a classification scheme prior to using the server is very important.
IMiS®/ARChive Server does not allow templates to be replaced for entities that have already

been created and saved.

It also does not allow changes to templates that have already been used to create entities;

following the start of server use, once folders and/or documents already exist on the server

the following operations which affect the classification scheme are allowed:

o New classes can be added to any level in the archive at any time.
New classes will be assigned classification codes automatically or manually, depending on
the automatic classification code settings.

e A class can be deleted if the class contains no entities, that is, if it is completely empty.

¢ Adding templates that define the metadata of child entities. They can be added to a
particular location in the hierarchy.

e Entities can be moved along with the entire entity tree contained in the entity being moved.

For more information see chapter Moving records in the classification scheme

(re-classification).

Warning: All these operations are only possible if the user has been given adequate access rights to
perform them. Administrators can manage access rights at any time following the creation of the

classification hierarchy.

Users with adequate access rights are also allowed to do the following at any time following the
creation of classes:
e Edit class metadata.
e (lose classes, which will prevent:
- The adding of new entities in the closed class or in the hierarchy below it
- Changing archive content anywhere in the hierarchy below the closed class,

including the metadata of the class itself.

3.4.3 Moving records in the classification scheme (re-classification)

No matter how carefully designed a classification scheme is, in the life cycle of an electronic
archive the need inevitably arises to change the scheme.

Many times, it is necessary to change the classification code of a specific folder or document.
For this purpose, IMiS®/ARChive Server offers the possibility of moving an entity of any type to
another location in the archive.

Moving an entity that contains a hierarchy with other entities causes the movement of the

entire hierarchy to a different location.

The following conditions must be met to successfully move an entity in the archive:

The user must have the right to read the entity being moved

For more information see chapter Access rights for an entity.

The user must have the right to move the entity being moved

For more information see chapter Access rights for an entity).

The user must have the right to create new entities in the location to the selected entity

is being moved to. For more information see chapter Access rights for an entity.

The template of the entity being moved must suit the templates designated as allowed in
the location the user is moving the entity to.

The parent entity cannot have Closed status.

The hierarchy the entity is being moved to must not be closed.

Automatic classification codes must be enabled for all entities in the hierarchy under the
entity being moved.

The security class of the moving entity should be lower or equal to the security class of

an entity, where user is about to move a moving entity.

Once an entity or a hierarchy of entities has been successfully moved, all moved entities are

assigned new classification codes that conform to the coding rules of the new location.

Additional metadata is also added to the umbrella entity of the moved entities:

sys:MoveReason: The reason for moving the entity; the user is required to provide this

information when an entity is moved.
sys:MoveAgent: The user who performed the move.
sys:MoveDateTime: The date and time of the move (end).

sys:MoveClassificationCode: The full classification code of the entity before the move.

For a detailed explanation of the metadata listed above see chapter System attributes.

An event is recorded in the audit trail for every moved entity, for a description see chapter

Move.

When an entity movement event occurs (with an entity and its child entities), a report is
created in the audit trail with the following information:

e Current status of the entity.

e (Old and new value of the full classification code of the entity.

e Reason for the move; this information is entered by the user who moved the entity.

e Values of all metadata the entity contained when the move occurred.

3.5 Search

One of the most important functions of IMiS®/ARChive Server is the ability to search archived
records and display folders and documents in line with a user’s access rights.

A user can search for all types of entities using individual metadata values, key words and/or
using the full text of documents stored in the archive. Users also have the option of recursive
searching and searching by inherited values in the case of attributes whose values are

inherited in line with their settings (security class, for example).

3.5.1 Data protection and security when searching

Search results display only classes, folders and documents for which a user has access rights
either through the security or through the Access Control List (ACL). Entities for which the
user does not have access rights will remain hidden to the user even if they meet the search
criteria.

A user’s other rights for operations on the entities in the search results are equal to their

rights when normally viewing the archive.

Example: If a user does not have the right to open an entity in Read mode, they will only see that it exists

and will only be able to view its public metadata in the search results.

3.5.2 Search syntax rules
A simple condition is the basic part of search syntax. IMiS®/ARChive Server use two types of
simple conditions:

e (Conditions for searching by metadata.

e (Conditions for searching by full document text.

A search syntax consists of at least one simple condition.

Advanced search syntax consists of multiple simple conditions joined in the search syntax by
logical operation (AND, OR, exclusive OR and negation).

Brackets can be used to further define the sequence of logical operations.

3.5.2.1 Simple conditions for searching by metadata
IMiS®/ARChive Server enables users to search by all metadata for which searching has been
enabled in the settings (searchable). Searching is available for all types of metadata.
A simple condition for searching by metadata consists of three components:
e The name of the metadata for which the condition is valid; in the condition, the name of
the metadata is always listed in brackets.
Example: [Amount]
¢ Comparison operation. The following operations can be used for comparison in simple
conditions: less than (<), less than or equal to (<=), equal to (= or ==), different (<> or !=),
greater than or equal to (>=) and greater than ().
e The value to which the comparison applies. All values can be listed in double quotes.

If a value contains a space, the use of double quotes is required.

Example: “Lower Manhattan’.
A period () is used to separate whole numbers from decimal values. Date and time values
must be listed using XML notation. With time and date values, four special expressions

that replace the whole value or one of its parts can be used.

@NOW@ the entire value will consist of current date and time

Example: [StartSession] < @NOW@

@TODAY@ the date in the value will correspond to today’s date
Example: [TimeReceived] < @TODAY@T08:00+02:00

@YEAR@ the year in the value will correspond to the current year
@MONTH@ the month in the value will correspond to the current month
Example: [Timelmage] < @YEAR@@MONTH@-15T20:00+02:00

A special value for search criteria is the expression NULL. These values can be used to
condition the existence of the values of specific metadata.
When using the value NULL and with metadata of a logical kind, only the same as (== or =)

and different (<> or !=) comparative operators can be used.

e Qptionally, the arithmetic operations of addition and subtraction (+ or -) are stated after
the name of metadata, where the second operand is a constant value.
This option does not apply to sign and logic metadata.
A special form of constant value is assigned for date metadata, consisting of at least one
or all three components that represent years, months and days.
Individual components consist of a whole number and a letter that represents a date unit
as in the following examples:
- useyorY foryears (e.g. 15y)
- use m or M for months (e.g. 3m)

- use d or D for days (e.g. 60d).

Examples: Simple conditions for searching by metadata.
[Amount] - 40.5 >= 250
[Author]="John Smith”
[SessjonStart] + Ty3m <= 2017-05-07T11.05+02:00
[EndStart] + 7d <= @NOW@
[Authorll=NULL

3.5.2.2 Simple conditions for searching by full text of content
IMiS®/ARChive Server enables users to search using the full text of content for which
searching has been enabled in the settings. This search option is available for content of all

types.

Simple conditions for searching by full text of content are listed in curly in search syntax:
{*John Smith"}. Within the curly brackets, a simple full text search term can be expanded to a
more complex full text search term using logical operations.
The following logical operations are supported for terms for searching by full text of content;
they are listed in the order in which they are calculated:

Negation: NOT .

And: AND .

Or:0oR.

In the full text search terms, parentheses can be used to change the order in which operations

are performed.

Example: {"'Smith" AND ‘John" OR “Frank"} will find all texts where both words, “Smith” and “John’,

appear and texts where the word “Frank” appears.

Example: {"Smith" AND (‘John” OR “Frank’)} will find all texts where the word "“Smith” appears in

combination with either the word ‘John” or the word “Frank’.

3.5.2.3 Logical operations in search syntax
Simple terms link to form complex terms using logical operations.
IMiS®/ARChive Server supports the following logical operations; they are listed in the order in
which they are performed:
Negation: NOT or! .
And: AND Or & .
Excluding or: XORor » .

Or:0oRor|.

Example: The term: [A1>3 OR [A]=3 AND [Bl!=NULL is equal to the term.: NOT [Bl== NULL & [A]==3 | [A]>3
In both cases, the ‘and” operation is performed first, and then the “or” operation.

In the second example, the negation operation "NOT” is performed before "ANLD’,

Parentheses can be used to change the default order in which logical operations are
performed. Using parentheses, the search term shown above becomes something different,

and the search results will also be completely different.

Example: The use of parentheses causes the "OR” operation to be performed before the "AND”
operation: ([Al>3 OR [Al=3) AND [Bl!I=NULL

Both types of simple terms can also be used in the same search syntax.

Example: The term: [Surfacel >= 12 AND {"John AND Smith"} is correctly formed.

We recommend joining full text search terms in a single term in curly brackets if possible.

Example: The term: [Surfacel >= 12 AND {‘John"} AND {*Smith"} will return the same results as the term
[Surfacel >= 12 and {"John" AND “Smith"}

The search will be slightly faster with the second term.

3.6 Authenticity
3.6.1 Conditions

The metadata and content of entities may change throughout their life cycle.

A precondition for ensuring the authenticity of entities is their inalterability.

IMiS®/ARChive Server uses the recommendations of the LTANS to mathematically check
integrity. LTANS (Long-Term Archive and Notary Services) is a body that prescribes de facto
standards for long-term content archiving procedures. Entities are included in the procedure
according to the rules described below. For more information see chapter Rules.

It is recommended that rules are written in such a way that only unchangeable entities (i.e.
closed entities) are included in the authentication process. Since the content of the entities
can later be changed, proofs for such entity are generated repeatedly.

Additionally, an entity must have at least one metadata that denotes it is an object of an
Archival Information Package — AIP.

AIP is an XML representation of the content of the entity and its metadata, and is described in

more detail below.

The authenticity of an AIP and consequently of the entity to which it pertains is proven by the
ERS created in the process of determining the authenticity of data subject to long-term
archiving.

The illustration below shows the process of including entities that meet the conditions for the

process for determining the authenticity of data subject to long-term archiving.

Entity
evaluates
timestamping
rules?

Entities

Entity
contains metadata
aor content far
AlP?

Lang term
archive and End
notary system

Image 7: Entity role in the process of keeping the authenticity of data for long-term archiving

3.6.2 Concept
One of the key concepts of a secure digital archive is maintaining authenticity of the archived
records for the entire duration of their storage.
This means that the original properties of the document must be preserved with regard to
its context, structure and content. The key is that from the moment a document is archived
all parts (structure, content, metadata, etc.) necessary for ensuring authenticity are no longer
changed. The authenticity of electronically archived records can be determined using the
following functionalities:

e Hashing - #.

e Digital signatures with digital certificates.

e Timestamps.

3.6.2.1 Hashing - #

A hash is the result of a one-way hashing functions that takes a block of data as input (for
example, the string of bits of the binary content of a document, the original text of a document)
and calculates a so-called hash with a fixed length. Even the slightest change in the input data

will result in an enormous change in the value of the hash.

The properties of an ideal hashing function are as follows:
e A hash can easily be calculated for every input block of data.
e The input block of data cannot be ascertained from the hash (the hashing function only
works one way).
e |t is impossible to alter the input data in such a way that the hash would remain
unchanged.
e |t is theoretically impossible for the hashes of different blocks of data to be identical or

collide.

Technological development and gains in processing power have led to an increase in the
likelihood of a collision of hash values, which weakens the security of the hashing function.
Today, for example, the MD5 hash function can now be cracked and as such is no longer safe

for use.

IMiS®/ARChive Server Manual Version 9.9.1810

Image 8: How the hashing function works

3.6.2.2 Digital signature and digital certificate
A digital signature is based on a PKI or public key infrastructure and mathematically ensures
the authenticity of a digital document.
The digital signature scheme is based on three algorithms:
o Key generation: A private and public key are generated; these keys are crucial for
generating and verifying a signature.
e Signature algorithm: A digital signature is generated on the basis of the private key and
the document.
e The signature verifying algorithm: The authenticity of the document is checked on the

basis of the digital signature and the public key.

Digital signature generating process Digital signature validation process

Document

Document

Secure

hashing

function
H

Secure

hashing
function
H

Hash Hash

. Digital
Digital . h
N h Digital signature :
Private key signature signature validation Public key
function function
Digital .
signature Documentis Is signature Document is
not authentic valid? authentic

Image 9: Generating and verifying a digital signature

—_—
€8]
e8]

2018 © Imaging Systems, Inc., All rights reserved.

The validity of a digital signature depends on the validity of the digital certificate.
To preserve the authenticity of a document, it must be signed with a new digital certificate

before the old one expires.

3.6.2.3 Timestamps

The timestamping process is equivalent to digital signing, except that it also involves a TSA or
Time Stamping Authority.

The latter adds a time component to the digital signature. This time component or timestamp
uniquely specifies the time of the digital signature of the document. As in the case of digital
signatures, the validity of timestamps is limited by the validity of the digital certificate.

As noted above, a digital certificate needs to be renewed to ensure document authenticity.

A timestamp is used to renew digital signatures.

It is a practical solution, especially if content has been signed by multiple persons whose digital
certificates will eventually expire. Without a timestamp, all the signatories whose digital
certificates had expired would need to sign the document again in order to ensure the
authenticity of the content.

With a timestamp, the authenticity of the content can be ensured even if the digital certificates

of the signatories have expired.

All the methods listed above (hashing, digital signatures and certificates, timestamps) have
their shortcomings, both in terms of technology (hashes can potentially be cracked) and
duration (digital certificates expire). That is why the use of just one of these methods is not
suitable to ensure the long-term authenticity of a document.
There exist a number of standards that use a combination of hashing, digital signatures and
timestamps to ensure the long-term authenticity of documents:

e ETSI standards.

e Evidence Record Syntax — ERS.

e Auditing Control Environment — ACE.

o (Content Integrity Service — CIS.

IMiS®/ARChive Server use the ERS standard in XML form (XMLERS, RFC 6283) to provide for

the long-term authenticity of documents. This standard is described below.

3.6.3 Storing digital certificates
IMiS®/ARChive use a certificate store for work with digital certificates. It is based on the open
source OpenSSL library.

Storing digital certificates enables the following:

Adding digital certificates.

Enabling and disabling digital certificates.

Searching digital certificates.

Searching a list of revoked digital certificates.

To speed up the process of obtaining digital certificates and current information on revoked
certificates, the store caches the currently used certificate chain and information about

revoked certificates.

3.6.3.1 The digital certificate chains
The digital certificate chain is a list of digital certificates that proves the authenticity of an
individual digital certificate. Every digital certificate in the list is signed with the private key of

the next digital certificate in the list.

At the end of the list is the certificate authority root certificate, which is a self-signed
certificate. This kind of chain is known as a chain of trust and serves to ensure the authenticity

of the certificates it contains.

The illustration below shows an example of a certificate chain with three digital certificates and

the process of verifying individual certificates:

Digital certificate Retrieve certificate Cedd'ﬂ_:alt'””n_ar“"‘t“rmf
autharity certifcate o7 cerfve® Retrieve cerificate

" Root authority digital
Subject name Subject name authority certificate certificate

Suhjectname
FPuhlic key FPublic key
Public key Check
Certification authority Cetification autharity digital
name name signature
Certification authority Cerification authority
digital signature digital signature

: ; of root
Digital sighature certificate

Check Check
digital digital
signature signature

Image 10: The digital certificate chain

3.6.3.2 Adding digital certificates
Digital certificates will be successfully added to the certificate store if the following conditions
are met:
e The digital certificate must be valid at the time it is added to the store (i.e. cannot be
expired).
e The store must contain all previous digital certificates that make up the chain of trust.
e All previous digital certificates must be enabled.
e [f you are concerned about whether a digital certificate has been revoked when adding
the certificate or about the potential revocation of the other digital certificates, note
that adding will succeed only if a check reveals that none of the certificates have been

revoked.

There are two mandatory conditions for adding certificates to a store:
e The certificate is valid at the time of adding.

e There are already certificates in the store which are Enabled and make up the chain of

trust.

Digital
certificate

Certificate
expired?

Is certificate
chain valid?

A

Is
CRUOCSP
cerificate check
required?

Certificate
authority
found?

Search for
certificate
authority

Checking
CRUOCSP

Checking
succeed?

NO

certificate
helong
to CA?

check of cert.
chain
required?

Required
saving to
database?,

Checking
CRLIOCSP

Checking
succeed?

in chain?

certificate =
already in
database?

ranjevanje
vhazo

Shi

Image 11: Adding a digital certificate to a store

3.6.3.3 Enabling and disabling digital certificates

By enabling and disabling digital certificates we control which digital certificates we trust.

By disabling individual digital certificates, we automatically disable the entire branch, which the
disabled digital certificate is a part of. If the branch includes a disabled certificate, then such

branch is invalid or such a certificate within the branch is not taken into account.

3.6.3.4 Searching digital certificates
Digital certificates can be searched for in the store using their hash (the SHA-512 hashing
algorithm is used) or using the unigue 32-bit identifier they are assigned when saved in the

database. Digital certificates not stored in the database do not have an identifier.

3.6.3.5 Searching information about revoked certificates

Information about revoked certificates can be searched for using the 64-bit unique identifier
assigned by the server when a certificate is saved in the database. The saving of information on
revoked certificates is performed when verifying timestamps in the process for determining
the authenticity of data subject to long-term archiving. For more information see chapter

ERS and Time stamping).

Every digital certificate has so-called certificate extensions. These extensions are described in

the RFC 5280 specification (http://tools.ietf.org/html/rfc5280).

Extensions contain information about distribution points where information about the following
can be obtained:

e Revoked digital certificates.

¢ Information about what type a digital certificate is.

¢ Information about the intended uses of a digital certificate.

e (Other information.

Besides information about distribution points, when processing digital certificates, the server

also uses extensions called basic constraints and extended key usage.

3.6.3.6 Basic constraints

The extension contains information about whether a digital certificate belongs to a certificate
authority or not. The information is recorded in the “mCACertificate” parameter of the digital
certificate and can have a value of “1” or “0”.

A value of “1” means that the digital certificate belongs to a certificate authority, and a “0”

means that it does not.

http://tools.ietf.org/html/rfc5280

3.6.3.7 Extended key usage
An extension contains parameters with information about the purpose of the usage of a digital

certificate.

Parameter: mServerAuthentication
Valid values: 1or O
Description: If the value is 1, the digital certificate can be used to authenticate the server when

setting up an encrypted connection between server and client.

Parameter: mClientAuthentication
Valid values: 1 or O
Description: If the value is 1, the digital certificate can be used to authenticate the client when

setting up an encrypted connection between server and client.

Parameter: mEmailProtection
Valid values: 1 or O

Description: If the value is 1, the digital certificate can be used to sign email messages.

Parameter: mCodeSigning
Valid values: 1 or O

Description: If the value is 1, the digital certificate can be used to sign executable code.

Parameter: mMicrosoftServerGatedCrypto
Valid values: 1 or O

Description: This parameter is not used.

Parameter: mNetscapeServerGatedCrypto
Valid values: 1 or O

Description: This parameter is not used.

Parameter: mOcspSign
Valid values: 1 or O
Description: If the value is 1, the digital certificate can be used to sign OCSP server replies that

transmit information about revoked digital certificates.

Parameter: mTimestamp
Valid values: 1 or O

Description: If the value is 1, the digital certificate can be used for timestamping.

Parameter: mDvcs

Valid values: 1 or O

Description: If the value is 1, the digital certificate can be used to sign components in the DVCS
protocol (the protocol is described in the RFC 3029 specification-
http://toaols.ietf.org/html/rfc3029).

3.6.3.8 Cryptography extension

With JCA (Java Cryptography Extension) the use of digital certificate storage is also enabled in
the plug-ins (plug-ins for directory services, plug-ins for timestamping, ...). This enables the
uniform use of the digital certificate storage in all IMiS®/ARChive Server components.

The digital certificate storage in the plug-ins is enabled by adding a reserved word »IAKS« to
the plug-in configuration, which represents the digital certificate storage. The next record
represents the plug-in configuration, which uses the server storage of digital certificates for

safely connecting to the LDAP server.

<Arguments>
<Class>com.imis.imisarc.server.aaa.impl.ActiveDirectory</Class>

<LdapURL>I/daps.//path.to.the.server</LdapURL>

<S5LT5Type>IAKS</S5LTSType>

</Arguments>

3.6.4 ERS

Evidence Record Syntax — ERS is the standard that describes the system for ensuring the
authenticity of data subject to long-term archiving.

ERS prescribes how authenticity proofs are to be created and renewed. At the same time,

it describes how they are to be structured in order to unambiguously prove the authenticity of
the archived records from the moment they enter the process for ensuring long-term

authenticity.

http://tools.ietf.org/html/rfc3029

IMiS®/ARChive Server performs ERS in XML format using the RFC 6283 standard
(https://tools.ietf.org/html/rfc6283).

The key processes for ensuring the long-term authenticity of data are:
e The process for generating proofs.

e The process for renewing proofs.

Before beginning the process for generating authenticity proofs, the content and metadata the
evidence syntax will be used to secure or prove must be selected. This is done by creating an
Archival Information Package (AIP) for every entity that meets the conditions for ensuring the

long-term authenticity of stored data. For more information see chapter Conditions.

" Evidence
process

Image 12: Creating an AIP for generating authenticity proofs

The authenticity proofs (hashes, digital signatures, timestamps) have a limited life span.

The validity of a digital signature and timestamp are limited by the validity period of the digital
certificate used to create them.

That is why they must be renewed (a new digital signature or timestamp must be generated).

This is what is known as the simple authenticity proof renewal process.

Over time, the degree of security provided by the algorithm for creating hashes diminishes,

as the likelihood of collisions between hashed values grows. That is why the algorithm must be
replaced with a new one. This is what is known as the complex authenticity proof renewal
process. It is used to ensure that the proofs do not become unreliable even though the

underlying mathematical algorithms deteriorate, so to speak, over time.

Generated authenticity proofs must be periodically checked and renewed before they become

invalid, as shown in the illustration below.

https://tools.ietf.org/html/rfc6283

IMiS®/ARChive Server Manual

Version 9.9.1810

Feriodic |5 evidence Evidence
verification reliahle until reliahility
evidence the next extension
reliability periad? process

Image 13: The authenticity proof renewal process

Verification of the authenticity of archived records takes place in two steps:

e (Checking the AIP against data in the ERS.

e (Checking the content and metadata of the entity against the values in the AIP.

If both checks are successful, that means that the content and metadata of the entity have

remained unchanged for the entire duration of their storage. If any of the checks are

unsuccessful, that means that the data cannot be guaranteed to be authentic.

@ -
Data
authenticity
can not be
guaranteed

Data is
authentic

Entity

Image 14: Example of verifying data authenticity

2018 © Imaging Systems, Inc., All rights reserved.

146

3.6.4.1 The proof generating process

For every entity that enters the authenticity proof process for the long-term archiving of data,
an Archival Information Package (AIP) is created. This package is processed by IMiS®/ARChive
Server on the basis of the information found in the package header. For more information see
chapter AIP.

A hash is then calculated for the processed package; it serves as the basis for timestamping.
The timestamp unambiguously proves that the hash (and the AIP to which it belongs) existed

before the time listed in the timestamp.

AlP Processed Hash
processing AP function

I

Timestamp f—] TMeSEAMPING lq Hash

process

Image 15: The time stamping process for an individual AlP

Because the timestamping process is rather demanding, and most timestamp providers
charge for their services, it would not be rational to timestamp individual hashes.
That is why timestamping is usually done with packages. This involves the following steps:
e AlPs are created for all entities for which proof of authenticity needs to be created.
e All created AlPs are processed by IMiS®/ARChive Server, and hashes are generated
from them.
e These hashes are used to construct a hash tree - the server then uses so-called Merkle
trees for timestamping. For more information see chapter Merkle tree.
o The Merkle tree is then used to calculate a root hash that secures the entire tree of
hashes.
e The root hash is timestamped, creating proof of the existence of all hashes (and their

AlIPs) in the Merkle tree before the time listed in the timestamp.

A Merkle tree can be used to timestamp a package with a large number of entities and
therefore considerably rationalizes the authenticity proof generation process.

Once proofs have been generated, their validity must be maintained through renewals.

AP
processing

Hash
function

Processed
AlPs

Timestamping Merkle Hashes
process Roothash tree

s

Timestamp

" Y

A

Image 16: The time stamping process using a Merkle tree

3.6.4.2 The authenticity proof renewal process
All generated authenticity proofs must be renewed before their validity expires, as otherwise
they cannot be used to ensure the authenticity of long-term data archiving.
The renewal of authenticity proofs can be broken down into two methods:
e Simple renewal.

e Complex renewal.

3.6.4.2.1 Simple authenticity proof renewal process

Simple authenticity proof renewal process is performed when the digital certificate that
created the timestamp is about to expire. The timestamp is renewed simply by calculating and
then timestamping its hash. The new timestamp extends the reliability of the old one even if the

digital certificate associated with the old stamp has expired. This is called a timestamp chain.

Because it would be imprudent to renew individual timestamps, Merkle trees are used in line
with the same process used for AlPs. The simple authenticity proof renewal process is
combined with the proof generation process.

A Merkle tree is used; through the hashing process, AlIP hashes and timestamps that are
about to expire are added.

By timestamping the root hash of the Merkle tree, authenticity proof is created of the

existence of the AIP and the validity of the timestamps that are about to expire is renewed.

Timestamps
hefare
expiration

Hash
function

Processed
AlPs

Merkle
tree

F §

Hashes

Timestamping
process

Y

Root hash

Image 17: The simple authenticity proof renewal process in combination with proof generation

3.6.4.2.2 Complex authenticity proof renewal process
Complex authenticity proof renewal process is performed when the deterioration of the degree
of security of a hashing algorithm used to create AIP hashes is foreseen. In this casg, the
following steps must be used to renew hashes before the hashing algorithm becomes weak.
1. A new, secure hashing function is selected.
2. A new hash is calculated for the AlP.
3. A new hash is calculated from all proofs that belong to the AIP in step 2.
4. The hashes from steps 2 and 3 are concatenated, and their new joint hash is added to
the Merkle tree. For more information see chapter Merkle Tree.
5. The steps described in 2, 3 and 4 must be performed for every AIP that was hashed
using the potentially weak algorithm.
6. A root hash is then calculated for the Merkle tree.

7. The root hash is time stamped.

Complex authenticity proof renewal is used to ensure the reliability of an AIP and all the proofs
associated with it. The new timestamp is the start of a new timestamp chain which can be
renewed using simple authenticity proof renewal as long as the hashing function used in the

last complex authenticity proof renewal is considered secure.

Processed Secure hash Secure hash
AP function H function H Evidences

Hash Hash

Concatenation

Merkle
tree

Image 18: The part of the complex authenticity proof renewal process (steps 2, 3, 4)

3.6.4.3 Merkle tree
A Merkle tree is a tree-shaped data structure in which the nodes of the tree are hashes
created using the same type of hashing function. The tree has the following properties:
e |t contains only hashes created with the same type of hashing function
(a Merkle tree cannot contain hashes created with the MD5 and hashes created with
the SHA1 algorithm, for example).
e Hashes are added to the tree as leaf nodes.
These are nodes without child nodes.
e Adding and remaoving hashes is only possible before the tree is constructed.
e The root hash is the hash calculated when the tree is constructed; it secures the entire
tree.
e The constructed tree can be reduced only to those nodes that are required to calculate

the root hash from an individual leaf node.

IMiS®/ARChive Server constructs Merkle trees using a binary tree. A binary tree is a data

structure with a node that can have a maximum of two child nodes.

3.6.4.3.1 Constructing the Merkle tree
The construction of a Merkle tree is the process of constructing nodes from the leaf node to
the root node.
Node construction follows these steps:
¢ Two hash values are taken (from leaf nodes).
e The binary values of the hashes are sorted by size from smallest to largest.
e The sorted values are joined or concatenated.
e The hashes of the value sorted in this way are used to calculate a new hash of the same

type that represents a new node in the tree.

This process can be repeated as long as more than one node is available. When only one node

remains, the tree is constructed. The node that remains represents the root hash.

Example: A Merkle tree with four leaf nodes with hashes H1, HZ, H3 and H4. Let’s assume the following

relations exist between the values of the hashes:
e The binary value of H1 is less than that of H2 (H1 < HZ).
e The binary value of H3 is greater than that of H4 (H3 > H4).

On the basis of these relations the following formulas can be used to calculate two new nodes,
H12 and H34:
e H12 = HASH (H1 || H2) — because H1 < H2, the sorting maintains the order, which is why
the two hashes are only joined (the || operation)
e H43 = HASH (H4 || H3) — because H3 is greater than H4, the sorting reverses the order
of the hashes.

Let’s assume the following relations exist between nodes H12 and H43: H12 < H43.
The following node is calculated from these two hashes: H1243 = HASH (H12 || H43).
Because H1243 is the last node in the tree, the tree has been constructed; the value of this

node is therefore the root hash.

Image 19: Example of a Merkle tree

3.6.4.3.2 A reduced Merkle tree
The constructed tree can be reduced only to the number of nodes that are required to
calculate the root hash. Reduction follows these steps:
e Aleaf node is selected; this node will be used to create a reduced Merkle tree.
e |et’s take a look at the parent node of the selected node; we will take all nodes directly
under this node (one of which is the node we selected in the previous step).
The values of the hashes in the nodes are sorted in ascending order (similarly to how
nodes are constructed).
¢ We continue by searching for all nodes directly above it, until there are no more
(meaning we have come to the root node). All nodes found in this way are sorted in
ascending order.
e The nodes directly above it are not included in the reduced tree, as they can be

calculated in accordance with the rules for constructing a Merkle tree.

Example: The reduced Merkle tree we used to construct a tree.

Let’s select leaf node H1. The node directly above it is H12, and its child nodes are H1 and HZ.

We take both nodes and sort them by the size of their hashes (let’s assume H1 < HZ). Node H1243 is
directly above node H12, and its child nodes are H12 and H43.

Because node H12 can be calculated from nodes HT and HE, it is left out and only node H43 is included in
the reduced tree. Node H1243 does not have a node directly above it, which is why the reduction of the

tree is finished for node H1.

The reduced tree therefore contains nodes in the following order: H1, H2, H43.
As the illustration below shows, the reduced tree for node H2 is the same, as H1 and H2 have

the same parent node, H12

Image 20: Example of a reduced tree for nodes H1 and H2

An example of a root hash.

The root hash of the reduced tree is calculated the following way:

H1243 = HASH (HASH (H1 [| HZ) || H43).

The calculation process is as follows:
o H12 = HASH (H1 || HZ) — the intermediate node H12 is calculated.
o SORT (H12, H43) = [H12, H43] — the sorting results in H12 and H43 (H12 < H43).
o H1243 = HASH (H12 || H43) — the root hash is calculated.

Let’s look at an example of the reduced tree for nodes H3 and H4, which contains the following order of
nodes: H4, H3, H12.

The root hash is calculated the following way:
H1243 = HASH (H12 || HASH (H4 || H3)).

The process is as follows:

o HA43 = HASH (H4 || H3) — the intermediate node H43 is calculated.

SORT (H435, H12) = [H12, H43] — the sorting results in H43 and H12 (H12 < H45).
o H1243 = HASH (H12 || H43) — the root hash.

3.6.4.4 Syntax

As noted elsewhere, IMiS®/ARChive Server performs ERS in XML format.

3.6.4.4.1 “EvidenceRecord” tag

The root XML element is the EvidenceRecord tag, which contains the elements listed in the

table below.

Name of the XML element Type of the XML element Required
Version Attribute YES
ArchiveTimeStampSequence Tag YES

Table 13: XML elements of the EvidenceRecord tag

“Version” attribute

This attribute has the fixed value “1.0” and represents the ERS version.

“ArchiveTimeStampSequence” tag

The content of this tag is the sequence of all archived timestamp chains, which shows the
generation and renewal of authenticity proofs of entities stored for extended periods of time.

For more information see chapter The proof generating process and The authenticity proof

renewal process.

Every timestamp sequence is marked with the tag ArchiveTimeStampSequence.

Example: An XML record representing an ERS with two chains of timestamps.

<EvidenceRecord xmins="http.//www.setcce.org/schemas/ers" version="1.0">
<ArchiveTimeStampSequence>
<ArchiveTimeStampChain order="1">...</ArchiveTimeStampChain>
<ArchiveTimeStampChain order="2">...<Archive TimeStampChain>
</ArchiveTimeStampSequence>

</EvidenceRecord>

3.6.4.4.2 “ArchiveTimeStampChain” tag
This label contains a chain of archived timestamps created in processes for creating and
renewing using the same hashing function.

The elements of the tag are described in the table below.

Name of the XML element Type of the XML element Required
Order Attribute YES
DigestMethod Tag NO
CanonicalizationMethod Tag YES
ArchiveTimeStamp Tag YES

Table 14: XML elements of the ArchiveTimeStampChain tag

“Order” attribute

The value of this attribute represents the sequence of timestamp chains.

When the first archive timestamp is created, the construction of a timestamp chain with the
attribute value 1 begins. All archive timestamps created with simple renewal are then added to
this chain.

For every complex authenticity proof renewal process, a new archive timestamp chain is
created with the attribute value 2, 3 and so on.

For more information see chapter The authenticity proof renewal process.

‘DigestMethod” tag

This tag contains the required Algorithm attribute. The value of the attribute is a URI
that prescribes the hashing algorithm used in the chain. This label is not required, as

information about the hashing algorithm is also found in the individual timestamps.

“CanonicalizationMethod” tag

This tag contains the Algorithm attribute. Its value is the URI or Uniform Resource Identifier

that prescribes the algorithm for converting a chain to a canonicalized chain.

3.6.4.4.2.1 “ArchiveTimeStamp” tag
This archive timestamp contains the timestamp (with all data required for its verification) and
a reduced Merkle tree if multiple AlPs are time stamped. The elements of the tag are described

in the table below.

Example: The XML report shows a chain containing three timestamps generated using the SHAT
hashing algorithm.

<ArchiveTimeStampChain order="1">
<DigestMethod algorithm="http.// www.w5.0rg/2000/09/xmldsig#shal’/>
<CanonicalizationMethod algorithm="http.//www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<ArchiveTimeStamp order="1">...</Archive TimeStamp>
<ArchiveTimeStamp order="2">...</Archive TimeStamp>
<ArchiveTimeStamp order="3">...</Archive TimeStamp>

</ArchiveTimeStampChain>

Name of the XML element Type of the XML element Required
Order Attribute YES
HashTree Tag NO
TimeStamp Tag YES

Table 15: XML elements of the ArchiveTimeStamp tag

“Order” attribute

The value of this attribute represents the order of an archive timestamp within the chain.

An archive timestamp with the value 1 was created using the proof generation process, and all

other archive timestamps were created in the simple authenticity proof renewal process.

“HashTree” tag

If this tag is present;, it represents a reduced Merkle tree above which an archive timestamp

was created. If the tag is not present, the archive timestamp belongs to an object that has a

hash in the timestamp in the TimeStamp tag.

This tag represents a reduced Merkle tree. It contains an order of Order elements that

represent the levels of the Merkle tree. The first level (level 0) is not included because the value

of the root node can be calculated. The elements of the Sequence tag are described in the table

below.
Name of the XML element Type of the XML element Required
Order Attribute YES
DigestValue Tag YES

Table 16: XML elements of the Sequence tag

“Order” attribute

The value of this attribute represents the level of the reduced Merkle treeg; levels are in reverse

order compared the depth of the tree. For more information see chapter Merkle tree.

The first valid value of this attribute is 1, which represents the hashes of the leaf nodes.

The value 2 represents the next level, and so forth.

“DigestValue” tag

The value of this tag contains a BaseB4 encoded hash.

Example: An XML record shows a reduced Merkie tree with two levels.
The first order (order 1) contains Base64 coded hashes of the leaf nodes, and the second order contains

the hash of the node that makes it possible to calculate the hash of the root node.

<HashTree>
<Sequence order="1">
<DigestValue>D+/0VEsECIRHISUNL Ivk4WesEkA=</DigestValue>
<DigestValue>EBEhfDzZh39+rfb1Kage6507TTok=</DigestValue>
</Sequence>
<Sequence order="2">
<DigestValue>BuheBtxbOOmNtE27uvYupJTrgBQR=</DigestValue>
</Sequence>
</HashTree>

“TimeStamp” tag

This tag contains the timestamp and a list of cryptographic elements (the entire branch of
digital certificates and information about revoked digital certificates) needed to verify the
timestamp. This data can be used to unambiguously place the validity of the timestamp at the

time it was made and consequently to prove the authenticity of the content it covers.

XML element name XML element type Required
TimeStampToken Tag YES
CryptographiclnformationList Tag NO

Table 17: XML elements of the TimeStamp tag

“TimeStampToken” tag

This tag contains a timestamp obtained from an issuer of secure timestamps.

It is required to have the Type attribute, which specifies the type of the timestamp.

Type Description

The timestamp is in the XML format prescribed

by the W3C consortium
XMLENTRUST

(www.w3.org/TR/xmldsig-core/) and is the

TimeStampToken content.

The timestamp was made using the RFC3161
RFC3161 standard. The content of TimeStampToken is
encoded in BaseB64 due to XML compatibility.

Table 18: Supported timestamps

http://www.w3.org/TR/xmldsig-core/

“CryptographicinformationList” tag

If this tag is present;, it contains cryptographic elements that enable verification of the integrity
of the timestamp. If this tag it not present, the timestamp itself contains these elements.
The Order and Type attributes are required for this tag; the latter specifies the type of

cryptographic element.

Type Description

This cryptographic element is the Base64
CERT yptograp

encoded X508 digital certificate in binary form.

This cryptographic element is the BaseB64
CRL encoded list of revoked digital certificates in

binary form.

This cryptographic element is the Base64
acsp encoded server reply (in accordance with the
protocol for continuous checking of the status of

a digital certificate) in binary form.

Table 19: Supported cryptographic element types

The example below shows the first archive timestamp that contains a reduced Merkle tree, a
timestamp in XML format and its accompanying list of cryptographic elements.
The first in the list is the root digital certificate, which, together with the digital certificate from

the timestamp, forms a chain of digital certificates.

The other element is the list of expired digital certificates, which can be used to check that the

digital certificate that generated the timestamp is not expired.

<ArchiveTimeStamp order="1">
<HashTree>
<Sequence order="1">
<DigestValue>D+/0VEsECIRHISUNL Ivk4WesEkA=</DigestValue>
<DigestValue>EBEhfDzZh39+rfb1Kage6507TTok=</DigestValue>
</Sequence>
<Sequence order="2">
<DigestValue>BuheBtxbOOmNtE27uvYupJTrgBQR=</DigestValue>
</Sequence>
</HashTree>

<TimeStamp>
<TimeStampToken type="XMLENTRUST">
<dsig:Signature
xmins:dsig="http.//www.w3.0rg/2000/09/xmldsig#">...</dsig:Signature>
</TimeStampToken>
<CryptographicinformationlList>
<Cryptographicinformation order="1" type="CERT">MIEHDCCAWS...
</Cryptographicinformation>
<Cryptographicinformation order="2" type="CRL ">MIISKTCCEREC...
</Cryptographicinformation>
</CryptographicinformationList>
</TimeStamp>
</ArchiveTimeStamp>

3.6.4.5 Simple renewal

With simple renewal, only the last archive timestamp in the last archive timestamp chain is
renewed.

The process is as follows:

1. The system checks if the last archive timestamp contains all the required cryptographic
elements which prove its integrity (certificates, information about revoked digital
certificates). If it does not contain these elements, the server automatically obtains them
and adds them to the list of cryptographic elements.

If proofs cannot be obtained, the process cannot be continued.

2. On the basis of the CanonicalizationMethod tag from the timestamp chain, an algorithm
is selected for conversion to a canonical form.

3. The TimeStamp tag is taken from the last archive timestamp and is canonicalized with
the algorithm selected above.

4. The selected hashing function (specified in the DigestMethod tag in the current chain or
contained in the timestamp being renewed) is used to calculate the hash of the
canonicalized data. This is then timestamped (or added to the Merkle tree if multiple
timestamps are being renewed or authenticity proof elements are being generated for a
combination of timestamps).

For more information see chapter Simple authenticity proof renewal process.

5. The timestamp is also checked

For more information see chapter Verifying a timestamp.

B. If the check of the timestamp fails, the entire authenticity proof renewal process must be
repeated; otherwise it would not be possible to ensure the integrity of the new

timestamp.

7. If the check is successful, a new ArchiveTimeStamp tag is created with an Order
attribute with a value one value greater than the archive timestamp being renewed.
If the archive timestamp was renewed using a Merkle tree, the reduced Merkle tree to
which it belongs is included in the timestamp. In the last step, a TimeStamp tag is
created. The verified timestamp is added to the tag, along with a list of cryptographic
elements used in the verification process. The new archive timestamp is added to the

last timestamp chain.

The illustration below shows how the simple archive timestamp renewal algorithm functions.

Caontains Evidence
=ArchiveTimeStamp= evidence about Retrieving retrieved

far extension authenticity? evidence successiully? ERROR [d—

=TimeStamp= P Choose P Add evidence to

normalization (<& normalization [« N .

process algorithrm =CryptographicinformationList=

Hash function = Hash Root hash
Timestamp » Timestamp
process Timestamp check

Creating Check

Add evidence to Creatin
— :

<TimeStamp= =ArchiveTimeStamp=

Order= Order +1 suceed?

=CryptographicinformationList=

v

Put
<ArchiveTimeStamp=
in
=ArchiveTimeStampChain= Creating
* <HashTree=

END

Image 21: Simple archive timestamp renewal

3.6.4.6 Complex renewal

Complex renewal takes place when a weak hashing algorithm is replaced.

It involves the recalculation of hashes using a new, strong algorithm. In this case, all
authenticity proofs made using the weak algorithm must be complexly renewed for all AlPs

created in the long-term storage process.

The authenticity proof renewal process is described below:

1. A new, strong hashing algorithm is selected.

2. A new algorithm is selected for conversion to a canonical form.

3. The new hashing algorithm is used to calculate the hash of the processed AlP.

4. The last archive timestamp in the current timestamp chain is checked in the
accompanying ERS to see if it contains all required cryptographic elements for proving
authenticity. If it does not contain these elements, they are obtained and added to the
accompanying list.

5. If proofs cannot be obtained, the process cannot be continued.

B6. The ArchiveTimeStampSequence tag and its content are taken from the accompanying
ERS and are converted to a canonical form using the new conversion algorithm.

7. The new hashing algorithm is then used to calculate the hash for the canonical content.

8. The hashes obtained from the AIP and the canonical content are combined (their binary
values are sorted in ascending order and they are joined). The new hashing algorithm is
used to calculate the hash, which is then added to the Merkle tree.

9. Steps 3 to 7 are repeated for all AlPs (and their associated ERSs)
that need to be complexly renewed.

10.The timestamp is verified. If verification fails, the process cannot be continued.

11. A new ArchiveTimeStampChain tag with the Order attribute is created in the
ArchiveTimeStampSequence tag. Its value is one greater than the value of the last
ArchiveTimeStampChain tag.

12.The new hashing algorithm and the new algorithm for conversion to a canonical form are
recorded in the new ArchiveTimeStampChain tag
(the DigestMethod and CanonicalizationMethod tags). A new ArchiveTimeStamp tag with
an Order attribute value of 1 is created. A new archive timestamp chain is now being
built.

13.The reduced Merkle tree for the combined hash of the AIP and ERS is included in the
ArchiveTimeStamp tag. A TimeStamp tag is created. The verified timestamp is added to
the tag, along with a list of cryptographic elements used in the verification process.

14.Steps 10 to 12 are repeated for all ERSs included in the complex authenticity proof

renewal process.

IMiS®/ARChive Server Manual Version 9.9.1810

Complex renewal with a Merkle tree is shown in the illustration below.

Processed Related ievi i
Retrieving Retrieving
AP ERS evidence successful?, ERROR
Last ontaing
as i
evidence
Secure hashing =ArchiveTimeStamp= elnhnut
function H o inlast » authenticity? Adding evidence in
=ArchiveTimeStampChain= , =CryptographicinformationList=

— }

Hash — =ArchiveTimeStampSequences

with content

y
Concatenation Secure hashing New
Hash [— ‘ [€— normalization
function H algarithm

Image 22: Processing an AIP and its associated ERS

Related
ERSes

Processed
AlPs

AlP
and ERS for
processing
exist?

Timestamping
Roothash —J» pracess

AP and ERS
processing

Timestarnp)
Check 4— Timestamp

"

Processing
succeed? ERROR Check
succeed?
ERS for
processing
exist?
: Putting
Creating » Adding »
=TimeStamp= evidences <Arcihn|v:eTV|vrnC?]2ti?]mp>
Creating Creating
‘:;22‘#39 |— =ArchiveTimeStamp> <ArchiveTimeStampChain=
Order=1 Order = Order + 1
Creating
=DigestMethod=
and
=Canonicalizatoindethod=

Image 23: Complex renewal with a Merkle tree

2018 © Imaging Systems, Inc., All rights reserved. 162

3.6.4.7 Verification

ERS verification is the process in which the authenticity of all archive timestamp chains is

checked. This proves the authenticity of the AIP secured by the ERS.

Verification can essentially be broken down into the following:

Verification of the starting timestamp chain.

Verification of the other timestamp chains.

3.6.4.7.1 Verification of the starting timestamp chain

Verification of the starting timestamp chain follows these steps:

The algorithm of the hashing function and the algorithm for canonicalization are obtained
from the chain (the DigestMethod and CanonicalizationMethod tags).

If the DigestMethod tag does not exist, it is obtained from the data from the first archive
timestamp chain (TimeStampToken).

Once obtained, the hashing algorithm is used to calculate the hash of the associated
processed AlP.

If the first archive timestamp contains a reduced Merkle tree, the calculated hash of the
AIP must be located in the first Sequence tag, in the HashTree tag. A root hash is
calculated from the reduced tree, and this hash must match the hash in the timestamp.
If there is no reduced Merkle tree, the calculated hash of the AIP must match the hash of
the timestamp.

The digital certificate of the timestamp is checked at the time it was created

(along with its associated cryptographic objects).

The same verification is performed for all subsequent timestamps in the chain.

Instead of an AIP hash, the previous archive timestamp is taken and canonicalized.

The canonicalized data is used to calculate a hash and these hash values are checked in

the reduced Merkle tree or in the timestamp (see the previous step).

3.6.4.7.2 Verification of the other timestamp chains

The verification of chains that are not the first chain follows these steps:

The algorithm of the hashing function and the algorithm for canonicalization are obtained
from the chain (the DigestMethod and CanonicalizationMethod tags).
If the DigestMethod tag does not exist, it is obtained from the data from the first archive

timestamp chain (TimeStampToken).

¢ Once obtained, the hashing algorithm is used to calculate the hash of the associated
processed AlP.

e The current chain and all subsequent chains are removed from the
ArchiveTimeStampSequence tag. As a result, only previous chains remain in the
ArchiveTimeStampSequence tag. These chains are the basis for canonicalization.

As described in the section about complex renewal, the entire
ArchiveTimeStampSequence is canonicalized and a hashing function is used to calculate
the hash of the canonicalized data.

e The hashes of the AIP and ArchiveTimeStampSequence tag are combined
(sorted in ascending order and joined) and their joint hash is calculated.

o [f the first archive timestamp contains a reduced Merkle tree, the joint hash must be
located in the first Sequence tag, in the HashTree tag. A root hash is calculated from the
reduced tree, and it must match the hash in the timestamp.

e [f there is no reduced Merkle tree, the joint hash must match the hash in the timestamp.

e The verification of the other timestamp chains follows the steps described in the section

on verifying the starting timestamp chain.

Once all chains have been successfully verified using the steps described above, the content of
the AIP can be said to have remained unchanged over time (from its creation to the moment of
verification). If the data in the AIP match the data in the tag, the authenticity of the archived
entity is guaranteed. If the verification fails at any point, the authenticity of the archived entity

cannot be guaranteed.

3.6.5 AIP
The Archival Information Package or AIP is a XML file with summary of the metadata and
content of an entity that is being secured through the generation of authenticity proof
elements.
The AIP is needed to group the metadata and content of the entity into an Archival Information
Package that represents the content for long-term data storage.
For more information see chapter Conditions.
An AIP is generated in the following cases:

e |f the properties of the entity correspond to at least one rule.

¢ When a closed entity has at least one metadata or content element marked for inclusion

in an AIP.

For more information see chapter Conditions and Templates.

The AIP is saved in the IMiS®/ARChive Server database. It can be accessed via an IMiS®/Client,

which can obtain the AIP (together with its ERS) when needed, even during exporting.

The AIP record consists of the following sections:
e Header
e Metadata
o Digital certificates

¢ Information about revoked digital certificates.

3.6.5.1 Header
All data necessary for the correct processing and interpretation of the AIP are located in the
Header section. The header is a required part of the AIP.

The Header tag contains the elements listed in the table below.

XML element name XML element type Required
Version Attribute YES
CanonicalizationMethod Tag YES

Table 20: XML elements of the Header tag

“Version” attribute

The Version attribute is an unsigned 32-bit number that represents the version of the AlP.
The version prescribes the method that should be used to process and interpret the AIP when

verifying the authenticity of the entity.

The values of the Version attribute are described in the table below.

Attribute value AIP interpretation

The AIP of version 1 is treated as a whole.

On the basis of the value of the CanonicalizationMethod tag a prescribed
canonicalization method is selected. It will be used to convert the entire
XML into a canonical form. This form is the basis for processing (calculating
a hash, etc.) and verifying the authenticity of the contents and metadata of

an entity.

Table 21: The AIP interpretation depends on the value of the Version attribute

“CanonicalizationMethod” tag

This tag contains the Algorithm attribute. Its value is the URI or Uniform Resource Identifier

that prescribes the algorithm for converting the AIP to a canonical form.

The W3C consortium prescribes the following URI values:
e http://www.w3.0rg/TR/2001/REC-xmI-c14n-20010315 (algorithm version 1.0).
e http://www.w3.0rg/TR/2002/REC-xml-exc-c14n-20020718 (exclusive algorithm

version 1.0).

e http://www.w3.0rg/TR/2008/REC-xml-c14n11-20080502 (algorithm version 1.1).

Example: The XML shows a version 1 AIP that uses a version 1.0 algorithm for conversions to a canonical

form.

<aip.Header version="1">
<ds.CanonicalizationMethod algorithm="http.//www.w3.0rg/TR/2001/REC-xml-c14n-20010315"/>
</aip:Header>

3.6.5.2 Metadata
The Metadata section contains the metadata of the entity defined in the templates for inclusion

in an AIP (chapter Links to templates), regardless of whether these metadata contain any

values.

This section consists of a sequence of Attribute tags that contain the elements listed in the

table below.

XML element name XML element type Required
Id Attribute YES
Type Attribute YES
Value Tag NO

“Id” attribute

The value of the Id attribute is the name of the metadata.

“Type” attribute

The value of the Type attribute represents the metadata type (chapter Attribute Types)

Table 22: XML elements of the Attribute tag

http://www.w3.org/TR/2001/REC-xml-c14n-20010315
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718
http://www.w3.org/TR/2008/REC-xml-c14n11-20080502

[{

‘Value” tag

The value of the Value tag represents the value or values (in the case of attributes with
multiple values) of the attribute.

Content can be simple (only the value of the attribute or the finger print of the value can be
present) or complex (in addition to the content or the finger print, data on digital signatures of
the content are present).

When a finger print of the value is present, the tag also includes the »Digest« tag with elements

described in the following table.

XML element name XML element type Required
DigestMethod Tag YES
DigestValue Tag YES

Table 23: XML elements of the »Digest« tag

»DigestMethod« tag

The tag includes the attribute »Algorithm« which is mandatory and whose value is URI.

This prescribes an algorithm for calculating the finger print of the content.

Supported algorithms are listed in the table below which represents the supported algorithms
for finger print calculation and corresponding URI, defined at W3C Consortium
(http://www.w3.0rg/TR/2013/NOTE-xmlsec-algorithms-20130124) and in the specification
RFC 4051 (http://www.ietf.org/rfc/rfc4051.txE).

Algorithm URI
MD5 http://www.w3.org/2001/04/xmldsig-more#md5
SHA1 http://www.w3.org/2000/09/xmldsig#shal
SHA224 http://www.w3.org/2001/04/xmldsig-more#shalc4
SHA256 http://www.wB.org/20071/04/xmlenc#shal56
SHA384 http://www.w3.org/2001/04/xmldsig-more#sha3584
SHAS512 http.//www.w3.org/2001/04/xmlenc#sha512

Table 24: Algorithms and corresponding URI's

»DigestValue« tag

The label represents BaseB64 coded value of a digital finger print created with an algorithm that

is recorded in the attribute »Algorithm« in the »DigestMethod« tag.

http://www.w3.org/TR/2013/NOTE-xmlsec-algorithms-20130124
http://www.ietf.org/rfc/rfc4051.txt
http://www.w3.org/2001/04/xmldsig-more%23md5
http://www.w3.org/2000/09/xmldsig%23sha1
http://www.w3.org/2001/04/xmldsig-more%23sha224
http://www.w3.org/2001/04/xmlenc%23sha256
http://www.w3.org/2001/04/xmldsig-more%23sha384
http://www.w3.org/2001/04/xmlenc%23sha512

Example: The simple value represents the metadata of an entity where the name and address of the

author are listed.

o The Author metadata is of the String50 type, and the Client Address1 metadata and Client
Address?Z are of the String100, MultiValue type.

e The Client AddressZ does not contain a value but is still included in the AIP.

<aip.Attribute ld="Author" Type="22">
<alp:Value>John Smith</aip:Value>
</aip.Attribute>
<aip.Attribute ld="Client Address1" Type="23">
<alp:Value>Broadway 23</aip:Value>
<alp:Value>1515 Broadway, New York </aip.Value>
</aip.Attribute>
<alp:Attribute Id="Client Address2" Type="23"/>

Example: simple content of the entity's metadata, where digital finger print of the content is used for

value.

<alp:Attribute ld="sys:.Content" Type="42">
<aip:Value>
<alp:Digest>
<ds.DigestMethod Algorithm="http.//www.w3.org/2000/09/xmldsig#shal"/>
<ds:DigestValue>xcwyBBmUzILgoHNSt+089/IGdmCiw=</ds:DigestValue>
</aip:Digest>
</aip:Value>
</alp:Attribute>

Complex content also includes data on digital signatures of the content. A digital signature is

included in the tag »Signature« and coded in BaseB4. A tag includes elements described in the

table below.
XML element name XML element type Required
Version Attribute YES
Type Attribute YES

Table 25: XML elements of the »Signature« tag

»Version« attribute

The value of the attribute represents a version of the digital signature.

»Type« attribute

The value of the attribute represents a type of the digital signature. Currently supported
format is »XMLDSIG«.
The following example shows a complex content, where in addition to a digital finger print two

digital signatures of the content are also included.

<aip.Attribute ld="sys:Content" Type="42">
<aip:Value>
<alp:Signature Version="1" Type="XMLDSIG">ajM5dHoglGlqZ...</aip.Signature>
<aip.Signature Version="1" Type="XMLDSIG">Ym520DMagl....</aip:Signature>
<aip.Digest>
<ds.DigestMethod Algorithm="http.//www.w3.org/2000/09/xmldsig#shal"/>
<ds.DigestValue>xAmFgsuudE4gOk T3Hg/GB65caiQ=</ds:DigestValue>
</aip:.Digest>
</aip.Value>
</alp:Attribute>

3.6.5.3 Digital certificates

Entire chains of digital certificates that belong to the electronic signatures and that are
BaseB4 encoded.

This section consists of the »Certificate« tag, which includes a mandatory attribute »Type« that
represents the type of digital certificate. Currently supported format is »X509DER«.

The following record shows an example of two digital certificates.

<aip.Certificate Type="X5090ER">bmilzOHYg...</ajp:Certificate>
<aip.Certificate Type="X5090DER">Ymd4zdmdJk...</aip.Certificate>

3.6.5.4 Information about revoked digital certificates

Both the chronological validity of digital certificates and information about revocations are of
key importance.

An issuer may recall a digital certificate for a number of reasons (they no longer trust the

confidentiality of the private key, they no longer trust the issuer of the digital certificate, etc.)

A revoked digital certificate is no longer valid (trustworthy). All digital signatures in timestamps
created along with the certificate also cease to be valid.
The CRL and OCSP types of information about revocations are supported in the AlP; both types

are BaseB64 encoded.

This section consists of the RevocationData tag that contains the elements listed in the table

below.
XML element name XML element type Required
Id Attribute YES
Type Attribute YES
Table 26: XML elements of the RevocationData tag
“Id” attribute

The value of the attribute is a unique identifier.

“Type” attribute

The value of the attribute represents the type of information about revoked digital certificates.

Supported values are shown in the table below.

Value Description
This information is a list of revoked digital
CRLDER B o
certificates in binary form.
This information results from continuously
0OSCP checking the status of a digital certificate in

binary form.

Table 27: Supported types of information about the revocation of a digital certificate

Example: An XML file for both types of supported information.

<aip.RevocationData id="1" type="CRLDER">MIISKTCCERECAREWDQ...</aip.RevocationData>
<aip.RevocationData id="2" type="OCSP">MIIDB/CB7wl..</aip.RevocationData>

3.6.6 Time stamping

Timestamps are the proof of the existence of the content at the time listed in the stamp.

Time stamping services are provided by trustworthy providers. Providers must fulfill strict
security regulations, otherwise there would be reason to doubt the integrity of the timestamps

they provide.

IMiS®/ARChive Server uses the plug-in concept to obtain timestamps. IMiS®/ARChive Server
offers a plug-in for every timestamp provider that provides timestamps using heterogenous
methods/interfaces. The plug-in can communicate with the timestamp provider and can
include its timestamps in processes for ensuring the authenticity of records stored on the

server.

Timestamp
authaority 1

Comman
timestarmp Timestarmp
plugin authority 2
interface

Server
IMiSIARChive

A

Timestamp
authority 3

Image 24: The plug-in concept

3.6.6.1 Obtaining a timestamp
The process for obtaining a timestamp has the following steps:
1. The server calculates the hash of the data that are the subject of the time stamping.
2. The hash is then sent through the common interface to the plug-in for time stamping.
3. If the timestamp provider uses a nonce or arbitrary number, the plug-in uses a random
number generator to create an arbitrary value which is sent to the provider along with
the hash. Nounce or arbitrary numbers prevent replay attacks

(http://en.wikipedia.org/wiki/Replay attack).

4. The timestamp provider adds a time component to the data it receives, and signs all the
components with a private key.

9. If the plug-in used a nounce or arbitrary number, this number is checked to see if it has
the same value as the timestamp. If this number is not found, the timestamp is denied, as

it is considered invalid.

3.6.6.2 Verifying a timestamp
Timestamp verification is performed by the server. The verification process follows these
steps:

e The validity of the digital certificate used to create the timestamp is checked.

e Information about the revocation of any certificate in the chain, including the one that

created the timestamp, is checked.

http://en.wikipedia.org/wiki/Replay_attack

e The mTimestamp parameter is checked in the extensions of the digital certificate that

created the timestamp. For more information see chapter Extended key usage.

e The validity of the digital signature of the timestamp is checked.

If any of these checks is not successful, the timestamp is treated as invalid and is denied by the

server. In this case, the process for obtaining a timestamp must be repeated.

3.6.6.3 Example
The example below shows a timestamp in XML format. The server uses the XMLSec open

source library to check the timestamp in the XML format (http://www.aleksey.com/xmlisec).

<dsig:Signature xmins:dsig=http.// www.w3.0rq/2000/09/xmldsig# id="TimeStampToken">
<dsig:Signedinfo>

<dsig:CanonicalizationMethod algorithm="http.//www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<dsig:SignatureMethod algorithm="http.//www.w3.org/2000/09/xmldsig#rsa-shal"/>
<dsig:Reference URI="#TimeStampinfo-13ED106F54C2C33E0420000000000007B81">
<dsig:DigestMethod algorithm="http.//www.w3.0rg/2000/09/xmldsig#shal"/>
<dsig:DigestValue>LaeChaxwlaMB8eSWZIRDOGxzFrw=

</dsig.DigestValue>

</dsig:Reference>

<dsig.Reference URI="#TimeStampAuthority">

<dsig.DigestMethod algorithm="http.//www.wS5.0rg/2000/09/xmldsig#shal’/>
<dsig:DigestValue>j8bwhFukHoDEjcimzgEZt XDF/ko=

</dsig.DigestValue>

</dsig:Reference>

</dsig:Signedinfo>

<dsig:SignatureValue>

sxbZkdzdWPcXHPOBkTWhZzgly Tt YL XUqaOzPaT/7VkwJ3haurbyil
gDCO71zRogaPojVCO6Ee545/VrdP1JmnzewFXAWSUU+g6EVrDDHLlyD
z4uWIGhXxEy31YINkGAmJ7BOicHNYImETOIk8tjCSecEs5UIxhJPAGLY
uBwE7gMSgWpLinMeAZCE/DVOPIgesV/TUYzal SbEqgEL pL 5gFkvCmNC
TBjnalNuyKe/YhQWbvZ0clvHePgyADNwX+IPOsAOS58NezpZHYriBO8
B+cAwglep/gZb1h8zDIqejHS8ibnFmvblk320/bG/Y1SK36yk+Fus
valBKHIFOACzx/im3GEBVIWGR==

</dsig:SignatureValue>

<dsig:Keyinfo id="TimeStampAuthority">

<dsig:X509Data>

<dsig:X509Certificate>
MIIFYDCCBEIigAWIBAgGIEQLMGwWDANBgkqghkiGSwOBAQUFADA+MAswC
QYDVARAGEWJza TEBMBKGATUEChMScERhdGUtaW5zdGIOAXRpbE5zMR
IWEAYDVRAGQLEwIzaXRIc3QtYEEwHhecNMTIwNTIXMDcOODMAWheNMTc
WNTIXMEXMDUZWjBvMGQswCQYDVEAAGEwWJ za TEbMBKGATUEChMSc3Rh
dGUtaW5zdGIOAXRpbE25zMRIWEAYDVQAGLEWITSVRFUTQtA0EXLzZAUB
gGNVBAMTDXRzYST0ZXNOL TIwMTIwFw YDVAGFEXAXMTEXMTEXMTEXMT
ExXMTEXMIIBANBgkghkiGSwOBAREFAAOCAQEBAMIBCgKCAGREAvsX
FScylvlL 5dbkj/dfELEgoO08CGH4 1xuz5TcKoBHCME+3KeNiGVivJll

http://www.aleksey.com/xmlsec
http://www.w3.org/2000/09/xmldsig

sZ0ihB4jtalJABKCEA4yJDEPhNVIIKEMIYaq YW/ 3trijvCS5ZefGWr
WOkHtEgclDLpRESbGDEACXpledIABMZR1bnS0ekgCOGbLPIiz/jk4Q
PDGaGZ00/FIsWfazvKqwnvHySsoSilUk 7ulUHBXgAv3Uv/gh YP)jSfas
XXSvy/SKJAusKOy VFXiiT+SmaX+p60KroDkxhuKMSWzoehHcCPLzy
BJUPerrO2+AX4zBytPsb+AVSIXjISKAIFpovSiph510HSh Tusedlg
b7gizt/leY3TINFABgIxwlDAGABo4ICMzCCAiBwDg YDVROPAGH/BA
QDAgeAMBYGATUAdJAEB/ wAMMAoGCCsGARUFBWMIMEAGA TUAIAGSMDc
WNGQYKKwYBBAGYWREFAzANMCUGCCsGAQUFBwIBFhlodHRwOi8vd3d3
LmNhLmadvdi5zaSGjcHMvMBoGATUdEQARTMBGBDSRzYS510ZXNORGdvd
15zaTAbBgNVHGRKEFDASMBAGCSqGSIbEfAdEHTEDAGEKMIHEBgINVHR
8BEgedwgesw\VaBToFGk TzBNMGAswCQYDVHAAGEwW za TEBMBKGATUECHhM
Sc3RhdGUtaW5bzdGIOdXRpb25zMRIWEAYDVAALEwWIzaXRIc3AtYEEX
DTALBgNVBAMTBENSTOMwgZGgg YEgg YuGWGxk YXAELYIANTAwLmdvd
152a59vdT1zaXRlc3GQtYEEsbz1zdGFOZS 1pbnNOaXR1dGIvbnMs Yz
1zaT18jZXJ0a W 2ZpY2FOZVIdmSj Y XRpbE5MaXNOPEJhc2WGLEAOIHA
6Ly893d3cuclinZWA4tYEEucEkvY3JsL3NpdGVzdCGzaXRlc3QtYEEU
YBJsMCsGATUdEAGKMCKADzIwMTIwN TIxMDcOODMAWoEPMAXNTATM
JEYMJEONDIaMBBGA1UdIwQYMBaAFFRJBOaHzx2JncqucgeooKBpty
HnMBOGATUdDgQWBBRSEwIisAtvgWA4RKeSTY5n4Mbg/dTAJBgNVHRM
EAIAAMBKGCSqGSIb2fAdBAACGNMMAobBFY 3LIEDAgSWMAOGLCS5qGSI63
DREBBRUAA4IBAGBA2Vgmo+MrbwagVeSvMin7aAGHLjw+HIMSKbXXvIM
/XEMFWhVrWFhbgX1f+00izSfDv4sErCPb3zze SGEmnEREzkGgqzbt

NigfvzdZ 7Xd7bGUEzwHECcVEBDSWEbJGeSkhyX2AWvtdeHyqgwgXply
MzFOVSWeeivgwgvMtUZjSbeClpEL UbIGWzwyxW155HufOdJdtgenn
rehCLtkYJIGky4TOmEgvwyOxmQi+o3rLvPa5yleHYa//KzPo+HBCPf
UGqgRFTPVSykalmBevTgECORAVGY)fiiTPbaeKARmMOxLAPpVINYFAGGe
PDwW+8UdKzecoBfujvZRtEUPInphHBIzxEKFU3

</dsig:X509Certificate>

</dsig:X5090ata>

</dsig.Keyinfo>

<dsig:Object id="TimeStamplinfo-13ED106F54C2C33E0420000000000007B81">
<ts:TimeStampinfo xmins.ds="http.//www.w3.0rg/2000/09/xmldsig#"
xmins:ts="http.//www.entrust.com/schemas/timestamp-protocol-20020207">
<ts:Policy id="http.//www.si-tsa.si/dokumenti/SI- TSA-politika-za-casovni-zig-1.pdf />
<ts:Digest>

<ds.DigestMethod algorithm="http.//www.w3.0rg/2000/09/xmldsig#shal"/>
<ds.DigestValue>93WARAD+wSgMASKCzcmjYe55NBKEc=

</ds:DigestValue>

</ts:Digest>

<ts.SerialNumber>10848763746098400336956641662414 7310345089
</ts.SerialNumber>

<ts:CreationTime>2014-03-31T15:00:00.0852

</ts.CreationTime>

<ts.Nonce>10600496071266535864

</ts.Nonce>

</ts:TimeStamplinfo>

</dsig:0Object>

</dsig:Signature>

“dsig:SignedInfo” tag

This tag contains information about what part of the XML is the subject of the digital signature

and methods for canonicalizing the XML when verifying a timestamp:

o dsig:CanonicalizationMethod: The method for canonicalizing the XML.

o dsig:SignatureMethod: The algorithm used to create the digital signature.

¢ dsig:Reference URI="#TimeStampInfo-13ED106F54C2C33ED420000000000007B81":

A reference to the dsig:0Object that is the subject of the content of the digital signature.
It also contains the algorithm and hash of that entity.

e dsig:Reference URI="#TimeStampAuthority": A reference to the dsig:Keylnfo tag,

which is also the subject of the digital signature content.

It contains the algorithm and hash of that entity.

“dsig:SignatureValue” tag

This tag contains the value of the digital signature.

“dsig:KeylInfo” tag

This label contains information about the digital certificate used to create the timestamp:
e dsig:X508Data — This tag contains the dsig:X509Certificate tag, which contains the

digital certificate used to create the digital signature.

“dsig:0Object” tag

This tag contains the following data:

¢ ts:TimeStamplnfo: Information about the protocol.

e ts:Policy: Information about the policy of the timestamp provider.
e ts:Digest: The hash (and the URI algorithm used to create it) the timestamp provider
received for time stamping.

e ts:SerialNumber: The serial number.

e ts:CreationTime: The date and time of the creation of the timestamp.

e ts:Nonce: A nonce or arbitrary number used in the process of creating the timestamp

request.

3.6.7 Rules

The rules specify the conditions under which the processes for generating and renewing
authenticity proofs are carried out and the content that forms the subject of these processes.
Generating and reviewing proofs is performed in packages using a Merkle tree unless there is
only one AIP or archival timestamp in the package. Packages are defined as a minimum and
maximum number of archival information packages that are time-stamped with one

timestamp. An example of package configuration is the following XML record:

<Settings>
<MinBatchSize>1</MinBatchSize>
<MaxBatchSize>300</MaxBatchSize>
</Settings>

»MinBatchSize« tag

Includes a minimum number of archival information packages that are time-stamped with one

timestamp. The value can't be lower than 1 or bigger than value »MaxBatchSizex.

»MaxBatchSize« tag

Includes a maximum number of archival information packages that are time-stamped with one

timestamp. The value can't be lower than »MinBatchSize« or bigger than 1.000.000.

3.6.7.1 Rules for generating authenticity proofs

Rules for generating authenticity proofs are used when checking whether an entity meets the
conditions to ensure authenticity. If the properties of the entity correspond to at least one
rule, proof will be generated for this entity as defined by the rule. If more rules correspond to
the entity’s properties, then first such rule is taken into account. Rules, which are also valid for

contained entities, have priority.

The example of the rule is shown in the following XML record:

<Rule>

<ld>307a8c60-390c-470d-9692-a43311bd57ef</Id>

<Enabled>true</Enabled>

<Type>Explicit</Type>

<IncludeChildren>true</IncludeChildren>

<Scope type="ClassificationCode">C=57</5cope>

<Expression>[sys.Status] = "2"</Expression>

<TemplateFilter></ TemplateFilter>

<TimeStampProviderld>a48d9c39-456a-470c-9c8b-e54bb391fc1dec</TimeStampProvideriad>
</Rule>

»ld« attribute

The attribute includes a unique identifier rule.

»Enabled« tag
The value of the tag can be »True« or »False« and determines whether a rule is enabled or not.

»Type« tag
The value of the tag can be »Explicit« or »Implicit«. Explicit rules are checked when performing
operations with entities (save, change status...), while in the process of time-stamping all rules

are checked.

»IncludeChildren« tag

The value of the tag can be »True« or »False«, and it determines the validity of rules for

subentities.

»Scope« tag
The value of the tag includes an identifier of the entity under which the rule is taken into

account when checking the properties of the entity. If the entity is not included, then such rule
does not apply to it.

»Expression« tag

The value includes a search string that is checked with the properties of the entity.
If a search string does not correspond to the values in the entity, then such rule does not apply
to the entity.

»TemplateFilter« tag

The value of the tag includes the names of the template with which the entities must be
created in order to correspond to the rule. The value is used as an additional filter for value
»Expression«.

If the value »TemplateFilter« is an empty string, then the value is not taken into account when
checking the rule with the value of the entity.

»TimeStampProviderld« tag

The value of the tag represents a unique identifier of the timestamp provider with which the

entities that correspond to the rule will be time-stamped.

Example: The rule in our cause applies to entities in a class with a classification code »57« (applies to the
class as well] and have a value »sys.Status« equal to 2 (closed entity) or are sub-entities of a class or a
closed case (i.e. documents in a closed case).

3.6.7.2 Rules for renewing proofs

Rules for renewing proofs are used for simple and complex renewals.

An example is shown in the following XML record:

<Rule>
<ld>6062074f-6d05-4f24-8592-866623ade8bf</Id>
<Enabled>true</Enabled>
<Digest>SHAT</Digest>
<CertificateExpiration Treshold>90d</CertificateExpirationTreshold>
<TimeStampProviderld>bac87d4d-fd1b-4065-bb36-5d03eeb25b6e</TimeStampProviderid>
</Rule>

»ld« attribute

The attribute includes a unique identifier rule.

»Enabled« tag
The value of the tag can be »True« or »False«, and determines whether the rule is enabled or

not.

»Digest« tag
The value of the tag represents a type of hash function that will be used with time-stamping.

»CertificateExpirationTreshold« tag

The value represents a time frame in which all timestamps with the same type of hash function,

whose digital certificates expire in the given time frame, will be captured.

»TimeStampProviderld« tag

The value represents a unique identifier of the trustworthy timestamp provider with which the

proofs will be renewed before they expire.

Therefore, the rule in our case applies for all proofs generated with a hash function SHA1,

whose digital certificates expire within 90 days.

3.7 Review process

Review process is a monitored and planned process for implementation of transfer,
destruction or permanent retention of electronic documentation. Each class, folder or
document (classified directly under class) must have at least one determined retention period.

For more information see chapter Managing retention policy connections. It specifies how

much time an entity must be archived in the archive system.

A retention period contains a time frame and a default action that will be implemented in the
review process. The action can be changed by users with rights (members of the committee)
that implement review.
The review process is divided into three phases:

e Preparation

e Decision-making

e |Implementation.

In the preparation and implementation phase of the review process, errors can occur for
various reasons. In the case of an error, the process is automatically cancelled.
The following changes are implemented:
e The status is changed to Closed.
e The state is changed to Failed. The »sys:ret:rev:State« attribute contains the value of the
state.

e The reason for cancellation is recorded in the »sys:ret:rev:Message« attribute,

The process in which an error occurred cannot be prepared or implemented again.

Editing is also not allowed. It should be emphasized that in the preparation and implementation
phase of the review process, actions on entities are implemented in the name of the user that
launched the preparation or implementation. User rights and the security level on the entities
affect the process of preparation and implementation. A course diagram of the review process

in preparation or implementation phase is shown below.

CFESEIDEI:VW Processing Review cni_atmn
' successful? arexecution
execution completed

Review creation
ar execution
failed

Image 25: Course diagram of the review process

3.7.1 Preparation phase
The first phase of the review process is preparation. A user with rights creates an entity that
will be later on included in the review process.
Besides the mandatory attributes, the user must enter the value of one of the following
attributes:

e »sys:ret:rev:Query«: the value represents a search string for entities

(chapter Search syntax rules), that will be included in the review process.

The use of a search string in the preparation phase of the review process is intended for
ad-hoc managing of entities without the retention policies.
e »sys:ret:rev:Schedules«: values represent unique identifiers of retention policies that will

be taken into consideration in the preparation phase of the review process.

If both attributes have determined values, the preparation phase of the review process is
cancelled as this is an invalid state.

The »sys:ret:rev:Scope« attribute plays an important role in the review process. The value of
the attribute is a classification code of the entity under which a search of all entities that
match the conditions will be implemented. If the value of the attribute is not set, the search will

occur in the entire archive.

The preparation phase of the review process is divided into:
e Preparation based on the search string

e Preparation based on retention periods.

In the preparation phase based on a search string, a search of entities that meet the
conditions in the search string is implemented. The result is a collection of entities that are
subject to filtration. Filtration removes all entities from the collection that do not belong in the

review process. For more information see chapter The filtration process. Then XML documents

are created from the filcrated collection that contain information on entities and allowed
actions that users with rights (members of the committee) manage in the decision-making

phase of the review process.

The preparation phase is similar with retention periods. A search string is taken from the
trigger (value of the »sys:ret:pol:Trigger« attribute) from each retention policy that is a part of
the review process, and an entity search is implemented. When the search is completed in all
retention periods, the collections of all searches form a union that represents a collection of
entities from all retention periods. This collection undergoes a filtration process where it is
additionally checked whether entities have at least one effective retention period that is part of
the review process. If this condition is not met, the entity does not belong to the current
review process. Finally, XML documents are created from the filtrated collection and they
contain information on entities and allowed actions that a user can change in the decision-
making phase.

If an error occurs in the preparation phase (e.g. an invalid search string, a deleted retention

policy, etc.), the process is automatically cancelled. For a new preparation, the entire phase of

preparation must be repeated.

The preparation phase of the review process is shown below.

Retention policy
hased review

Guery string
hased review

Cancel

Retention
policies

retrieved

successfully?

Searching
successiul?

Search by
retention
policy
trigger
successful?,

Entity
collection by Filtering Filtered
all retention process entity

policies collection

Retention
palicies

A 4

Image 26: Preparation phase of the review process

After a successfully implemented preparation process, XML documents that represent the

content of the process are created.

There are two types of XML documents:
¢ Read-0Only documents (in the »sys:ret:rev:Lists« attribute).

e Documents that members of the committee change in the decision-making phase (in the

»sys:Content« attribute).

A Read-Only document contains information on the entity and a set of actions that can be
implemented on the entity. The set of actions depends on several factors that are described in

detail in chapter The filtration process. Documents that the members of the committee can

change in the decision-making phase contain information on the entity, the default action and

reason.

3.7.2 Decision-making phase

In the decision-making phase, the members of the committee make a decision on what happens
with the entities that were part of the preparation. The members of the committee select an
action that is allowed for an individual entity, add a comment, change the reason for the

selected action, etc.

If the entities are transferred to another archive system, the members can add a reference to
the transferred entities or confirm a successful entity transfer. If the transfer is not confirmed,
entity destruction is cancelled on the server.

After the completed decision-making, the review process is implemented or cancelled.

If the process is implemented, the value of the »sys:ret:rev:Action« attribute is set to Complete.
This is a sign for the server that the process has been implemented.

If the process is cancelled, the value of the attribute is set to Discard, which is a sign for the

server that the review process is cancelled.

3.7.3 Implementation phase
Implementation of the review process is divided into:
e (Cancellation of the review process.

¢ |mplementation of the review process.

When the review process is cancelled:
e The server sets the value of the »sys:ret:rev:State« attribute to Discarded.
e The status is changed to Closed.

o A message is recorded in the »sys:ret:rev.Message« attribute that the review process

has been cancelled by the user.

In the implementation phase of the review process, all information on entities is loaded from
the XML Read-Only documents. Then verification is implemented in the following order:
e The form of XML documents must be compliant with the assigned XSD scheme.
o All entities from XML Read-Only documents must be present in the changeable XML
documents and vice versa.

e Selected actions on entities must be compliant with the allowed actions for the entity.

If verification is unsuccessful due to any of the steps, the review process is implemented with
an error. The entire process must be repeated.

An exception is verification of a selected action on entities. In that case, the implementation is
cancelled with an error. The state of the review process is set to »InReview«. This allows the
user to fix selected actions on entities and repeats the process. After a successful verification,
a filtration process is implemented on the collection of entities. The filtration process is

described in more detail in chapter The filtration process.

Here are some practical examples why a cancellation of action implementation occurs in the

implementation phase of the review process.

Example 1: In the review process, there is a folder with two contained folders besides other entities:

F=2017-00017

F=2017-00011"F=00007

F=2017-000711"F=00002

In the review process, the selected action for all three entities is »Dispose«. Members of the committee
realize that a disposition hold is bound to the »F=2017-00011« folder. Implementation of the action is
cancelled on all three entities as the disposition hold recursively affects all contained entities. The action

/s implemented on all other entities that are subject to the review process.

Example 2: Let’s take the combination from example 1 except that now the disposition hold is not bound
to the »F=2017-00011« folder. The folder contains a new folder »F=2017-00011"F=00005« that did not

vet exist in the preparation phase of the review process:

F=2017-00071

F=2017-00011"F=00001
F=2017-00071"F=00002
F=2017-00071"F=00003

In this example, the »Dispose« action is implemented on contained folders »F=2017-00011"F=00001«
and »F=2017-00011"F=00002«, whereas the disposition of the »F=2017-00011« folder is not possible as
it contains a new folder »F=2017-00011"F=00003« that is not a subject of review process. If an error
occurs during implementation on an individual entity, action implementation is cancelled on all parent

entities that are part of the review process.

Example 3: Let’s take the combination from example 1, however, two documents are in the contained

folder »F=2017-00011"F=00002«:

F=2017-00011"F=00002
F=2017-00071"F=00002"D=00001
F=2017-00071"F=00002"D=00002

The user in whose name the review process is being implemented does not have the right to delete the
»F=2017-00071"F=00002"D=00002« document. Consequently, the contained folder »F=2017-
00011'"F=00002« and its parent folder »F=2017-00011« are not disposed. However, the contained folder
»F=2017-00071"F=00001« is disposed.

Example 4: Let’s take the combination from example 1, where the action on contained folders »F=2017-
O0011"F=00001« and »F=2017-00011"F=00002« is set to »Permanent«. The action on the »F=2017-
00011« folder is set to »Disposex.

If the »Permanent« action is successfully implemented, the implementation of the »Dispose« folder is
unsuccessful as the »F=2017-00011« folder contains two folders in permanent retention.

Consequently, the subject is not destroyed.

The implementation of all actions is recorded in the audit trail (if it is enabled) and separately in a report.
The report consists of an XML and text document.

Actions on entities that are part of the review process are logged in the XML document.

Actions on entities that are not part of the review process (documents in folders) are logged in the text
document. Such entities are indirectly dependent as the parent entities define actions that will be

implemented.

3.7.4 The filtration process

In the filtration process, the entire collection of entities is verified whether the entities meet

the conditions of the review process.

All entities (and their parent entities) that comply with the following conditions in the

preparation phase of the review process are disposed of:

The user in whose name the preparation is implemented has no right to see the
existence of an entity.

At least one disposition hold is present on an entity.

An entity does not contain at least one effective retention period that is compliant with
the set of retention periods that are used in the preparation phase of the review
process.

In the case of preparation of the review process on the search string, no verification
occurs.

An entity contains child entities that are subject to review process but they are not

present in the collection of entities for the current preparation of the review process.

For all other entities the presence of the »sys:Significance« attribute is verified.

The following values affect the allowed actions that are available on the entity in question:

The »Vital« or »Permanent« values on the entity: they affect the setting of the default
action to »Permanent«. The user can select only the »Review« action as the attribute
defines the importance of the entity. The value affects all other parent entities whose
default actions are changed as a consequence.

The »Retain« value: it represents a warning that an entity must be retained. For that
reason, the default action is set to »Review«. The user can change the action. The value

has no influence on the parent entities.

The following conditions affect the default action of an entity:

If an entity has more effective retention periods, it means it is in conflict. The default
action is set to »Review«. The user can choose from all the available actions.

If an entity contains other entities that have been in other review processes and have
already become permanent, the default action of the entity in question is set to
»Permanent«. This also applies to all parent entities. The user can select only the

»Review« action.

If the state of an entity is not compliant with any of the above conditions, the default action is
set to the value that the valid retention policy for this entity contains. The user can choose

from all the available actions.

The filtration process is also used in the implementation phase of the review process.
In that case, entities (plus all the parent entities) on which the selected actions cannot be
implemented on are marked:

e At least one disposition hold is bound to the entity.

e Anerror occurred on the contained entities during operation of an action (e.g. the user in
whose name the review process is being implemented does not have sufficient rights to
implement the operation, etc.).

e The state on the server in the implementation phase of review process differs from the

state in preparation phase.

Example: new entities that are subject to review process, but they are not present in the current

process, etc.

e The selected actions are in conflict.

Example: The selected action of a contained folder is »Review« and the parent folder is »Dispose«.
In that case, the selected action cannot be implemented on the folder as it contains a folder that

will be selected in another review process.

3.7.5 XML document format

In the review process, the following types of XML documents appear:
e Read-Only documents
¢ Read and Write documents

e Reports.

3.7.5.1 Read-Only document syntax
Read-0Only documents contain a state on the server in the preparation phase of the review
process. They also contain information on the entity (classification code, internal Id, address),

valid actions, reason and effective retention periods that apply to this entity.

3.7.5.1.1 »Review« tag

This tag represents a root element and contains elements from the table below.

Name of XML element Type of XML element Required
Header Tag Yes
Entity Tag No

Table 28: XML elements of the “Review” tag

3.7.5.1.2 »Header« tag

This tag contains a version of the XML document, the start date of the preparation phase of
the review process, entity classification code (represents a scope of entity searches for the
review process), available actions, predetermined reasons, and identifiers of all retention

periods. The tag elements are described in the table below.

Name of XML element Type of XML element Required
Version Attribute Yes
StartDate Attribute Yes
Scope Attribute No
Action Tag Yes
Reason Tag Yes
Schedule Tag Yes

Table 29: XML elements of the “Header” tag

»Version« attribute

This attribute represents a version of the XML document.

»StartDate« attribute

This attribute represents the start date and time of preparation of the review process.

»Scope« attribute

This attribute represents a classification code of an entity under which an entity search was
implemented in preparation phase of the review process. If the attribute is not present, the

search was conducted in the entire archive.

»Action« tags

These tags represent a set of actions that are available in the implementation phase of the

review process. Entities have a required »ld« attribute.

»RBeason« tags

These tags represent reasons for default actions that will be implemented on the entities.

A tag has a mandatory »ld« attribute that represents a unique identifier other tags refer to.

»Schedule« tags

These tags contain retention policies »ld« for the current review process. They are effective for

individual entities and retention policies that are in the preparation phase of the review

process. A tag has a required »ld« attribute that represents a unique identifier other tags refer

to.

3.7.5.1.3 »Entity« tag

Tags contain information on the entity that is involved in the review process.

Elements of a tag are described in the table below:

Name of XML element Type of XML element Required
Id Attribute Yes
IdType Attribute Yes
Type Attribute Yes
Id85 Attribute Yes
Title Attribute Yes
Action Attribute Yes
Reason Attribute No
Schedule Tag Yes

»ld« attribute

Table 30: XML elements of the “Entity” tag

This attribute represents an entity identifier.

»ldType« attribute

This attribute represents a type of entity identifier. The following values are valid:

e »C«: classification code is the identifier

e »E«: unique external identifier is the identifier

e »l«: internal entity identifier is the identifier.

»Type« attribute

This attribute represents a type of entity. The following values are valid:

o »C« the entity represents class
e »F« the entity represents folder

e »D« the entity represents document.

»ld85« attribute
This attribute represents an internal entity »ld«.

»Title« attribute
This attribute represents the title of an entity.

»Action« attribute

This attribute is a 32-bit unsigned value that contains information on valid actions on an entity
and the default action for an entity. The first four-bit values (from right to left or from the LSB
side) represent valid actions that are described in the table below. The action is allowed only if

the value of the bit is »1«.

Bit 3 — »Review« Bit 2 — »Transfer« Bit 1 — »Permanent« Bit O — »Dispose«

Table 31: Position of bites that represent allowed actions

The next 24-bites are not in use. The value of the final 4-bits represents the value of the »ld«
attribute in the »Action« tag inside the »Header« tag. At the same time, it represents the

default action for an entity.

»Reason« attribute

This attribute represents a reference to the »ld« attribute in the »Reason« tag in the »Header«

tag, whereas the »Reason« value represents the default reason for review of entity.

»Schedule« tag
This tag contains the required »ld« attribute that contains a reference to the »ld« attribute in

the »Schedule« tags in the »Header« tag: The value represents an internal retention period

identifier that is effective for the entity.

IMiS®/ARChive Server Manual Version 9.9.1810

Example:

<Review>
<Header StartDate="2017-08-17T18:14:19.170+02:00" Version="1">

<Action ld="1">Dispose</Action>

<Action ld="2">Permanent</Action>

<Action ld="3">Transfer</Action>

<Action ld="4">Review</Action>

<Reason ld="RO">Reason 1</Reason>

<Reason ld="R1">Reason 2</Reason>
<Schedule Id="50">

0d5021dd60c06fcfO9fe4PdB6ac61ad4434 72 7e5a6909255d5ed1/efB48 7921996

</Schedule>
<Schedule Id="51">
098197cff3eaFleIfeadfdBab6L9%ec4ad0cf3d06e6025c616853a58363819c816
</Schedule>

</Header>

<Entity Id="C=99" IdType="C" Type="C"
1d85="jkh820856nvbghdB4ikinbj2185hwqgbo58djhn378jck085jd"
Title="Legacy object containers" Action="536870927" Reason="R1"
<Schedule Id="S1"/>

</Entity>

<Entity ld="C=04"F=2017-00012"F=00001" IdType="C" Type="F"
1d85="b43ghif9853jxcgfsabr9fhnnbnd84hfcstk93e 7tb184 shfg "
Title="Review test" Action="536870927" Reason="R1">
<Schedule Id="51"/>
</Entity>
</Review>

The value of the »Action« attribute for the »C=04"F=2017-00012"F=00001« entity is. 536870927.
The binary representation is as follows: 00100000000000000000000000001111.
All actions are enabled on this entity (the value of the first 4 bits is 1171). The last 4 bits produce the

value 0010 (2), which is the »ld« attribute value of the »Permanent« action.

3.7.5.2 Read and Write document syntax
The syntax of XML documents, which are edited in the decision-making process, is very similar
to the read-only documents. It contains some additional attributes that are used in the

implementation phase of the review process.

2018 © Imaging Systems, Inc., All rights reserved. 189

3.7.5.2.1 »Review« tag

This tag represents the root element of a document and contains elements from the table

below:

Name of XML element Type of XML element Required
Header Tag Yes
Entity Tag No

3.7.5.2.2 n»Header« tag

Table 32: The “Review” tag elements

This tag contains a version of the XML document, available actions and associated reasons.

The tag elements are described in the table below:

Name of XML element Type of XML element Required
Version Attribute Yes
Action Tag Yes
Reason Tag Yes

»Version« attribute

Table 33: The “header” tag elements

This attribute represents a version of the XML document.

»Action« tag

These tags represent a set of available actions. They contain a required »ld« that represents a

reference to the action that has been selected for an individual entity in the implementation

phase of the review process.

»RBeason« tag

Tags represent a set of reasons for implementation of actions on the entities in the

implementation phase of the review process. They contain a mandatory »ld« attribute that

represents a reference to the reason that an individual entity refers to.

3.7.5.2.3 »Entity« tag
Besides attributes that refer to the entity, this tag contains a selected action and reason.
In the case of »Transfer« action, it is necessary to confirm a successful entity transfer with the

attribute.

Optionally, the reference to the transferred entity and comment can be entered.

The tag elements are described in the table below.

Name of XML element Type of XML element Required
Id Attribute Yes
IdType Attribute Yes
Action Attribute Yes
Reason Attribute Yes
TrfSucceed Attribute No
TrfRefld Attribute No
Comment Attribute No

Table 34: The “Entity” tag elements

The »ld« and »ldType« attributes represent an entity identifier and a type of identifier. They are
the same as in the Read-Only document. For more information see chapter Bead-Only

document syntax.

»Action« attribute
This attribute value is a reference to the selected action in the »Header« tag.

»Reason« attribute

This attribute value is a reference to the selected reason in the »Header« tag.

»TrfSuceed« attribute
If this attribute is present, its value indicates whether the entity transfer has been successful

or not (»True« or »False« values).

»TrfRefld« attribute
This attribute contains a value that represents a reference to the transferred entity.

IMiS®/ARChive Server Manual Version 9.9.1810

»Comment« attribute

This attribute contains a comment by the user that implements the decision-making.

Example:

<Review>
<Header Version="1">
<Action Id="A0">Dispose</Action>
<Action ld="A1">Permanent</Action>
<Action ld="A2">Transfer</Action>
<Action ld="A3">Review</Action>
<Reason ld="RO">Reason 1</Reason>
<Reason ld="R1">Reason 2</Reason>
</Header>
<Entity Id="C=99" IdType="C" Action="A2" Reason="R1" TrfSucceed="true"
TriRefld="IMISARC-1-192749948393985 769534 75895694938 7485 "/>
<Entity Id="C=99"C=01" IdType="C" Action="A0" Reason="R1"/>
<Entity Id="C=99"C=02" IdType="C" Action="A0" Reason="R1"/>
</Review>

The following will occur in the process of decision-making:
o the »C=99'C=07« and »C=99"C=02« entities are marked for disposition (the value of the »Action«
attribute is »A0, which is a reference to the »Dispose« action);
o the »C=99« entity has been successfully transferred (the »TrfSucceed« value has the »true« valuel.

A reference to the transferred entity has also been entered.

3.7.5.3 Report syntax
Reports contain information on entities, the selected action and information whether the

selected action has been successfully implemented.

3.7.5.3.1 »Report« tag

This tag represents the root element and contains elements from the table below.

Name of XML element Type of XML element Required
Header Tag Yes
Entity Tag No

Table 35: The “Report” tag elements

2018 © Imaging Systems, Inc., All rights reserved. 192

3.7.5.3.2 n»Header« tag

This tag contains a version of the XML document and actions selected for individual entities.

The tag elements are described in the table below.

Name of XML element Type of XML element Required
Version Attribute Yes
Action Tag Yes
Table 36: The “Header” tag elements
»Action« tag

These tags represent a set of available actions. They contain a mandatory »ld« attribute that

represents a reference to the action selected for individual entities in the implementation

phase of the review process.

3.7.5.3.3 »Entity« tag

Besides attributes that apply to an entity, this tag also contains a selected action and

information whether the action has been successfully implemented. The tag elements are

described in the table below.

Name of XML element Type of XML element Required
Id Attribute Yes
IdType Attribute Yes
Action Attribute Yes
Error Attribute No
Message Tag No

Table 37: The “Entity” tag elements

The »ld« and »ldType« attributes represent the identifier and identifier type of an entity, and

they are the same as in the Read-Only document. For more information see chapter Bead-Only

document syntax.

»Action« attribute

This attribute value is a reference to the selected action in the »Header« tag.

»Error« attribute

If this attribute is present, it has the »True« value. This means that the selected action on an
entity has not been successfully implemented. The reason for error is described in the

»Message« tag.

»Message« attribute

If this tag is present;, it contains a description of an error that occurred on the server during

action implementation.

Example:

<Report>
<Header Version="1">
<Action Id="A0">Dispose</Action>
<Action ld="A1">Permanent</Action>
<Action ld="A2">Transfer</Action>
<Action ld="A3">Review</Action>
</Header>
<Entity Id="C=01"C=05" IdType="C" Action="A0"/>
<Entity Id="C=01"C=06" IdType="C" Action="A0" Error="true">
<Message>Access denied. Insufficient rights to disposed the entity.</Message>
</Entity>
</Report>

It is evident from the report that the »C=01"C=05« entity has been successfully disposed, whereas an
error occurred with the »C=01"C=06« entity as the user who implemented the review process has no

rights to delete this entity.

3.8 Directory services
Directory services enable work with the server directory. The directory contains registered
users and user groups. These are an important part of the server infrastructure,
as they support the following processes and operations:
e User authentication.
e (btaining information about a registered entity in the server directory using attributes.

e Managing the Access Control List (ACL).

Authentication

Authentication is the process performed when setting up a user session.

If authentication is successful, the directory service confirms the identity of the user
connecting to IMiS®/ARChive Server. A user’s identity is confirmed

if their user credentials match the data in the server directory.

To simplify, user credentials are a set of information that unambiguously ensures that the
authentication data used to create the user credential data match the data used to create the
data in the server’s database of user credentials.

In other words, a key or password uses mathematic procedures to create user credential data
that tells the server that they were made using the key that the user used the last time the

user credentials were changed.

Obtaining information from attributes

Directory services make it possible to obtain information about registered entities in the
server directory by using the entities’ attributes. This information is obtained on the basis of a
unique 32-bit identifier that is assigned to every registered entity in the server directory.
This identifier can be used to obtain information such as the user’s account, the name and
surname of the user, a description of the user and other data from the directory entity.

For more information see chapter Attribute types.

Managing the Access Control List (ACL)

The access control list also uses a 32-bit unigue identifier. Rights and roles are linked to this
identifier. Directory services provide a link between an entity in the directory and its unique

identifier.

At the same time, these services also resolve the user groups individual users belong to.

This data is used by the ACL to calculate effective rights. For more information see chapter

Effective rights.

3.8.1 Types
The server directory supports two entity types:
e Users.

e User groups.

IMiS®/ARChive Server Manual Version 9.9.1810

3.8.1.1 Users
Users are persons who access information on the server. Users can be assigned to any

number of groups. There is no limit.

Example:
A user belongs to two groups, FINANCE and ACCOUNTING. The administrator can set an individual

user’s status as active or inactive. Inactive users will not be able to start a session with the server.

User

FINANCE ACCOUNTING INVESTMENT

Image 27: A user and their user groups

3.8.1.2 User groups

User groups are directory entities that have been assigned group rights on the server.

This provides an easier way of controlling access to individual documents, classes and folders
for large numbers of users. User groups can be nested as needed, and recursive nesting is also
possible. If recursion is detected in a group when resolving user groups, the system skips that

group, as its content has already been resolved.

Example: The FINANCE, ACCOUNTING and INVESTMENT user groups are nested in the FINANCIAL
SECTOR user group, at the same time, the FINANCIAL SECTOR user group also contains a user of its

N

FINANCE
DEPARTMENT

owrn.

FINANCE ACCOUNTING User INVESTMENT

Image 28: Example of user group nesting

2018 © Imaging Systems, Inc., All rights reserved. 196

3.8.2 Entities defined by the system
The directory of IMiS®/ARChive Server has the following predefined system and normal
entities:

e sys:Administrator

e sys:Administrators

e sys:CurrentUser

e sys:Server

o sys:Everyone

e Anonymous.

“sys:Administrator”

This directory entity represents the user who is the local administrator with full access rights.
It is located by default in the sys:Administrators user group.

No rights whatsoever can be set for this entity on the server.

“sys:Administrators”

This directory entity represents the user group with full access rights on the server.

As in the case of the sys:Administrator user, no rights whatsoever can be set for this entity on
the server.

If a user has been assigned to this group, the rights it confers override any other rights or

restrictions from any other user group or groups the user may be in.

“sys:CurrentUser”

This directory entity represents an abstraction of a user in the server system. In the process
of creating a new entity (class, folder, subject) the sys:CurrentUser identifier is replaced with
the identifier of the user creating the entity.

The user acquires the rights and prohibitions which become explicit for a user in the entity.

»sys:Servers

A directory entity represents a server user on whose behalf server services are being
performed, such as long-term archiving. A server user is distinguished from other users by the

fact that you can’t login to the server and perform operations on his behalf.

»sys:Everyone«

A directory entity represents a user group whose members are all directory users, and the
membership of the user group can't be changed. Unlike their system groups it is possible to
change access rights for this group which consequentially means that access rights are also
changed for all directory users.

Anonymous”
This directory entity represents a user connecting to the server using legacy clients that do
not support user authentication. The server treats this user as anonymous and as having

those rights set for an Anonymous entity.

Example: Let’s look at an example of creating an entity on the basis of a template for which the
sys:CurrentUser user has editing rights (Read and Writel in the ACL. When an entity is created using
this template, all rights are transferred from its ACL and added to the entity (as explicit rights) for the
user currently creating the entity. This user will therefore always have the right to edit entities which

they create.

3.8.3 Entity components
Directory entity components define properties and types of entities (users or user groups).

These components are presented below.

A 32-bit unique identifier that is automatically assigned to every entity in the process of
creating an entity; it cannot be changed. This identifier is used both to obtain additional

information through attributes and to calculate effective access rights in the ACL.

An 8-bit value that represents the type of the entity in directory services;
it can have the following values:
e TYPE_GROUP: This value represents a user group.

e TYPE_USER: This value represents a user.

“Account”
This character string is a unique value that represents the user account or the name of the
user group. Its value can not change throughout the entire entity life cycle. The largest

allowable size of the string is 256 bytes of UTF-8 characters.

“FirstName”
A character string that represents the user’s first name; its value is not unique and can
change throughout the entire entity life cycle.

The largest allowable size of the string is 256 bytes of UTF-8 characters.

‘LastName”

A character string that represents the user’s last name. Its value is not unique and can change
throughout the entire entity life cycle. The largest allowable size of the string is 256 bytes of
UTF-8 characters.

[{

‘Description”

This character string represents a description of an entity. Its value is not unique and can
change throughout the entire entity life cycle. The largest allowable size of the string is 256

bytes of UTF-8 characters.

“Email”
This character string represents the email address of the user or user group. Its value is not
unique and can change throughout the entire entity life cycle. The largest allowable size of the

character string is 512 bytes of UTF-8 characters.

“Flags”
This 32-bit unsigned value describes the properties of the entity:

e Enabled: This property determines whether a user account is enabled or disenabled.

e Deleted: Determines whether a user account or group is deleted.

e |ocked: Determines whether the user account is locked because of too many
unsuccessful logins.

¢ AdvancedAuthenticationEnabled: This property determines whether a user account

enables authentication with advanced authentication methods.

¢ PreSharedKeyAuthenticationEnabled: This property determines whether a user account
enables authentication with advanced authentication methods that use encryption
through a shared key.

o SRPBaAuthenticationEnabled: This property determines whether a user account
enables authentication with the SRP-6 authentication method.

e ExternalAuthenticationEnabled: Determines whether a user account enables external
authentication with LDAP and/or Kerberaos.

e HTTPAuthenticationEnabled: specifies whether the user account enables HTTP

authentication.

“AuthenticationType”

This numeric value represents the type of authentication the user can select for authentication
on the server. The currently supported values are:
e TYPE_SRPBA represents authentication on the server using SRP protocol (Secure
Remote Password protocol);
o TYPE_EXTERN represents external authentication mechanisms such as LDAP and

Kerberos.

“SRPBAcredentials”

An entity representing a user can be assigned user credentials that serve as a basis for
verifying the authentication of the user on the server. The user credential parameters are two-
character strings in UTF-8 form which represent the user password and a numerical value
that represents the SRP group. The latter determines the use of prime numbers in the SRP

protocol. For more information see chapter SRP.

“ExternalData”
An entity that is a part of the synchronization process contains details of the remote directory
service provider, a unique identifier from the remote directory and the value that indicates

whether the entity is a part of the synchronization process or not. For more information see

chapter Synchonization.

“SecurityClass”

This numerical value represents the security class set for the user or user group. It enables
access to entities with the same or a lower security class. For more information see chapter

Access.

“lcon

The binary string represents an image of the user or group. The server supports the following
image formats:

e JPEG (Joint Photographic Experts Group)

e PNG (Portable Network Graphics)

e GIF (Graphics Interchange Format)

e BMP (Bitmap Image File).

[{

‘Delegates”

A list of registered users (of their unique identifiers) who can present themselves in the
authentication process as persons authorized for other users, and thus execute operations on

their behalf.

3.8.4 Aliases

The server enables the use of aliases for user accounts. This functionality is useful when
connecting the archive system to existing authentication systems from third party providers.
A directory entity can be assigned any number of aliases that users can use when logging in.
Each alias must be unique (among other aliases) and cannot match any of the values of the

“Account” directory entity attribute.

3.8.5 Authentication
User authentication is a part of the process performed when starting a user session with the
archive server. Server supports two types of authentication:

e authentication with PAKE (Password-Authenticated Key Agreement) protocol (SRP);

e authentication with external service (active directory, ...).

All users (local and synchronized) can use authentication with PAKE protocol

if their credentials are stored in the server's database. In the authentication process with
PAKE protocol IMiS®/ARChive Server verifies whether the credentials that were sent by the
user match the credentials that are stored in the server's database. In the external
authentication process the external service verifies the credentials and notifies the server

whether the credentials match or not.

If the credentials match, the user has successfully verified their identity and can perform
operations on the server in line with their rights. If the credentials do not match, the server

denies the session, as the user has not successfully provided verification of their identity.

3.8.5.1 Authentication with PAKE

The server uses the SRP protocol for authentication. This protocol is an extension of the PAKE
(Password-Authenticated Key Agreement) protocol.

The PAKE protocol is an interactive method that enables two or more parties to establish a
secured communications channel without using a public key infrastructure and only by using

passwords (http://en.wikipedia.org/wiki/Password-authenticated key agreement).

The PAKE protocol must fulfill the following security specifications:
e (Off-line dictionary attack resistance.
e On-line dictionary attack resistance.
e [Forward secrecy.

¢ Known-session security.

Off-line dictionary attack resistance

The attacker can be passive (only observing the protocol) or active (actively altering data
transferred through the protocol). In either case, the protocol cannot be used to send data
(hashes, passwords, etc.) that would enable the attacker to learn the password using rainbow

tables or a brute force attack.

On-line dictionary attack resistance

If the attacker is active (actively altering data transferred through the protocol) it is practically
impossible to prevent them from randomly guessing the password. Regardless of this, the
PAKE protocol must ensure that the least possible damage is done in the even that an attack
succeeds (in the event of a successful attack, the user can guess exactly one password).
Attacks of this kind are easy to identify and prevent on the server (for example by denying a

session from a specific IP address after a set number of failed authentication attempts).

http://en.wikipedia.org/wiki/Password-authenticated_key_agreement

IMiS®/ARChive Server Manual Version 9.9.1810

Forward secrecy

Because there is no guarantee that a password will remain confidential over the long term,
the PAKE protocol must ensure the protection of keys from past sessions, even if the
password has been discovered. The protocol must also ensure that if an attacker is passively

monitoring key exchange, they cannot guess the session key even if they know the password.

Known-session security

If an attack succeeds and the attacker manages to start a session with the server by
impersonating a user (impersonation attack), the attacker is assumed to know the entire
procedure for starting a session (including all intermediate steps performed by the server and

client which are not publicly known, that is, which are not sent through the protocol).

The PAKE protocol must prevent a compromised session from threatening the security of
other, already established sessions. Additional information about the PAKE protocol is available

at https://eprint.iacr.org/2010/190.pdf.

3.8.5.1.1 SRP

The SRP protocol is an extended version of the PAKE protocol. It prevents man-in-the-middle
attackers from obtaining information.

A brute force attack could use this information to guess the password without actively altering

the data exchanged between the client and the server.

Communication hetween client and server is
intercepted and routed trough attacker computer

8y ——

User Server IMiS ARC

Attacker exchanges Aftacker exchanges

data with user ‘ data with server
‘/

Aftacker

Image 29: Man-in-the-middle attack on IMiS®/ARChive Server

2018 © Imaging Systems, Inc., All rights reserved. 203

https://eprint.iacr.org/2010/190.pdf

The SRP protocol has the following properties:
e Enables authentication on the server.
e |s resistant to dictionary attacks.
e Does not require public key infrastructure and consequently there is no need for trusted
third parties such as issuers of digital certificates.

e The client sends the server a zero-knowledge password proof. This is an interactive
method. The client proves to the server that it knows the password value without

sending the server any proof (a hash of the password, etc.) of the value.

SRP (version B) is used:

e To ensure transport layer security (a description of the SRP version can be found at

http://en.wikipedia.org/wiki/TLS-SRP).

e In the EAP (Extensible Authentication protocol — RFC 3748).
e In the SAML protocol.

SRP is additionally a part of the following standards: IETF (RFC 2944, RFC 2945, RFC 5054),
IEEE (P1363.2) and ISO (IEC 11770-4).

3.8.5.1.2 Protocol
Mathematical operations in the SRP protocol are limited to those operations specified in the

mathematical ring (http://en.wikipedia.org/wiki/Ring %28mathematics%29).

The SRP protocol has the following parameters:

e /- A secure prime number that must conform to the following formula: N =2 X q + 1,
where gis a prime number. The prime number N determines the size of the mathematical
ring and is a publicly known value.

e g— Multiplicative group generator (The combination of g and N is described in RFC 5054
- http://www.tools.ietf.org/html/rfc5054).

e H(J— Hashing function.

e k—The multiplicative parameter that creates asymmetry in the SRP protocol and by
doing so enhances resistance to an active attack.

e s— A random value known as a salt

(http://en.wikipedia.org/wiki/Salt %28cryptography%29) that is used to generate the

password hash.

http://en.wikipedia.org/wiki/TLS-SRP
http://en.wikipedia.org/wiki/Ring_%28mathematics%29
http://www.tools.ietf.org/html/rfc5054
http://en.wikipedia.org/wiki/Salt_%28cryptography%29

e /—User name.

e p—Password in plain text.

e x— Private key.

e y— Server verifier.

e (/— Scrambling parameter.

e 3, b—Random numbers that represent a short-term key.

e A, B— Public parameters.
e 5—Session key.
e K—Secure session key that is the result of successful authentication
e M,;— Proof that the client knows the password.

e M, —Proof that the server knows the password.

A precondition for starting the authentication process with the SRP protocol is that the
server has the vverifier saved. It will use this verifier to check the content of the user
password. The private key xis required to create the verifier, which is calculated the following
way:

x =H(s,p)

A random value sis used to generate a private key and plain text password; the two are joined
and a hash is calculated. Its value is the value of the private key.
The server verifier is then calculated using the following formula:

v =g*

IMiS®/ARChive Server saves the verifier together with the random value s; it destroys the
private key because it no longer needs it. The verifier calculated this way (together with the
random value) therefore belongs to a specific user, which is why a link is required between the
verifier and the user to whom the verifier belongs. On the server, this function is performed by

the directory, that is, by directory services.

The authentication process may now begin. First the client and the server calculate the
multiplicative parameters from the prime number and the multiplicative group generator:

k =H(N,g)

The client initiates authentication by using the secure random number generator to generate a
random number a. This number is then used to calculate the value of the parameter A.

The user name /is then sent to the server together with the parameter A.

The parameter Ais calculated using the following formula:

A=g

The server receives the user name and the parameter A, then uses directory services to
obtain the verifier vand the random value s. The client uses the secure random number
generator to calculate the value of 4. This number is then used to calculate the value of the
parameter 5.

The parameter Fis then sent to the server along with the random value s.

The parameter Bis calculated using the following formula:

B=kxv+ g°

The first-time parameters are exchanged, both sides check the validity of Aand 5.
These parameters are valid if they meet the following criteria:

A # 0 (mod N) - Checking on the server

B # 0 (mod N) - Checking on the client

If either of the parameters does not meet the criteria, the authentication process is
terminated. If the parameters meet the criteria, the authentication process continues.
The client and server calculate the scrambling parameter v using the following formula:

u =H(A,B)

The scrambling parameter must meet the following criteria: u # 0. If it does not,
the authentication process is terminated. Authentication then continues.
The client and the server each calculate their own proof of password recognition and a secure

session key K.

Calculating the secure session key on the client

The client takes the entered password p and receives the random value s from the server and
calculates the private key x using the formula shown above: x = H(s, p).
On the basis of the private key, a session key S and its hash K, which represents a secure
session key, are calculated. The secure session key is calculated using the following steps:
S = (B -k X gx)(a+u><x)
K = H(S)

Calculating the secure session key on the server

The server calculates the secure session key using the following formulas:
S = (A xv¥b
K =H(S)

The client first sends the server its proof of password recognition and proof of the secure
session key. The proof is calculated using the following formula:

M; = H(H(N) xor H(g),H(I),s,A,B,K)

The server uses the same formula to calculate its own proof M, by including the value of the
secure session key K'in its calculation. The values of the proofs must match or an

authentication error will occur and the server will deny the session.

If the values match the server calculates its own proof using the formula below
and sends it to the client:

Mz = H(A,Ml,K)

The client uses the same formula to calculate its own proof M,and includes its own secure
session key K in the formula. If the values of the proofs do not match, an authentication error
will occur and the server will deny the session. If the proofs match, the authentication was
successful. Besides successful authentication, the client and server now also have a secure

session key that they can use to encode data and set up a secure transport channel.

3.8.5.2 Authentication with external service
Authentication with external service can be used by all users that were synchronized with the
local directory from the remote directory.
Supported authentication methods with external service are the following:
o LDAP (Lightweight Directory Access Protocol)

e Kerberos.

3.8.5.2.1 LDAP
LDAP is an application protocol for accessing and maintaining distributed directory services via
Internet protocol. The protocol allows network access to the data on users, groups, services

and other entities on a central server. A detailed description of the protocol is described in

RFC4511 (https://www.ietf.org/rfc/rfc4511.txt).

https://www.ietf.org/rfc/rfc4511.txt

IMiS®/ARChive Server Manual Version 9.9.1810

The authentication process via LDAP protocol is carried out on the server as follows:
1. The client sends the server a username and password for authentication.
2. The server connects to the LDAP server and makes a query about the user with the
username that the client sent to the server.
3. If the user exists on the LDAP server, the server attempts to authenticate the username
and password that the client sent to the server.

4, The user is authenticated if he sent the correct credentials for the LDAP server.

If any step is not carried out or is carried out with an error, the user is not authenticated and

the session with the IMiS®/ARChive Server is not established. The following figure shows a

successful authentication process using the LDAP server.

Username and password
. User authenticated
Client _

Quety user for existence

Authenticate with usemame
and password
User authenticated

Image 30: LDAP authentication

IMiS®/ARChive

LDAP

LDAP protocol (version 3) supports the following authentication types:
e Anonymous access: when connecting to the server the authentication is not carried out.
e Simple authentication: the username and password are sent in a clean copy.

e SASL (Simple Authentication and Security Layer): the protocol uses the challenge-

response method for authenticating and establishing a secure data transfer connection.

Since the username and password for LDAP authentication are sent through the network

it is advisable to send them through the Secure Sockets Layer. This way we can avoid
man-in-the-middle attacks. A Secure Sockets Layer must be established between a client and
IMiS®/ARChive Server. If anonymous access or simple authentication is used for
communication between IMiS®/ARChive Server and LDAP server, it is advisable to have a

Secure Sockets Layer between them as well.

2018 © Imaging Systems, Inc., All rights reserved. 208

3.8.5.2.2 Kerberos

Kerberos is a network authentication protocol that operates on the principle of tickets.

The latter provide secure authentication using an unsecured network channel and mutual
authentication. This means that the client and server that participate in the authentication
process can verify each other's identities.

For the operation, the protocol requires the so-called trusted third party.

Usually this is the server that issues tickets encrypted with the symmetric key. The protocol
is resistant to eavesdropping and replay attacks. Details are explained in specification

RFC 4120 (https://www.ietf.org/rfc/rfc4120.txt).

Trusted third party consists of the authentication service and ticket granting service or TGS.
Both services together constitute the Key Distribution Center or KDC. Client authentication
for the Kerberos protocol on the IMiS®/ARChive Server is carried out as follows:

e The user enters a username and password in the client, which then sends the username
to the Key Distribution Center (KDC) in the form of a clean copy. The KDC checks
whether the user exists and sends the client an encrypted response. If the user has
entered the correct password, the client decrypts the response. Decrypted data include
a TGS session key and an encrypted Ticket granting ticket or TGT. Session key will then
be used for communicating with TGS, and the TGT ticket is used for requests for service
tickets. If the client successfully decoded the answer, he obtained the session key and
TGT. This is enough to successfully complete authentication.

e After successful authentication, client requests a ticket for the IMiS®/ARChive Server.
The server sends a request to the KDC containing the TGT and Service principal name or
SPN. The latter represents the IMiS®/ARChive Server. KDC verifies the existence of SPN
and sends the encrypted SPN ticket to the client.

e The client sends the IMiS®/ARChive Server the received SPN ticket.

e [IMiS®/ARChive Server checks the validity of the tickets by deciphering it with keys which
were created upon SPN registration on the KDC. If ticket decryption is successful,
then it belongs to the current SPN. Afterwards it is verified whether the user matches
the user for which the SPN ticket was made. If it matches, then the user was
successfully authenticated on the KDC. He has also successfully obtained the ticket for
the SPN which means that he can be authenticated on the IMiS®/ARChive Server as

well.

https://www.ietf.org/rfc/rfc4120.txt

IMiS®/ARChive Server Manual

Version 9.9.1810

Kerberaos protocol also allows the so-called Single Sign On or SSO. A user logs in to the domain

only once. When he logs in, he obtains a TGT ticket with which he requests tickets for different

SPN's without needing to reenter his password. With SSO entry the first authentication step

is omitted. The following figure shows an example of successful authentication on the

IMiS®/ARChive Server using the Kerberos protocol.

| Username >
@ < Session key + TGT |
\ I IMISEVAR Chive (SPMN) + TGT
>
Client

‘Q' < SPN ticket

authenticated SPM ticket

SPN
ticket

IMISEFAR Chive server

Key Distribution Center- KDC

Authentication Tickét granting
service service - TGS

Image 31: Kerberos authentication

For Kerberaos authentication, it is necessary to mention that the tickets have a limited valid

lifetime. It is therefore necessary to ensure synchronization between KDC and SPN service,

otherwise problems can occur when verifying SPN tickets, and subsequently during

authentication.

2018 © Imaging Systems, Inc., All rights reserved.

210

3.8.6 The directory entity life cycle
The life cycle of an entity in directory services can be divided into six types of processes:
e (Opening a directory entity
e (Creating a directory entity
e Editing a directory entity
e Saving a directory entity
e Discarding a directory entity

e Deleting a directory entity.

START

v v

Create entity Qpen entity

T T
Y

s Edit entity
A A 4
Discard entity Save entity Delete entity

()

Image 32: Interconnected processes in the life cycle of an entity in the directory

3.8.6.1 Opening an entity

Opening a directory entity is the process of obtaining an instance of the entity from the
directory. During the initialization process, IMiS®/ARChive Server loads all entities located in
the directory. At the same time, when an entity is opened it checks if a directory entity was

previously loaded. If it was loaded, it returns its instance; if not, it returns an error.

3.8.6.2 Creating a directory entity

A directory entity creation process is the first process in the directory entity life cycle.
First, the entity type is selected and a name is entered for the user account or user group.
During the editing process, additional components can be set based on the entity type.

If the newly created directory entity is discarded before being saved, the content of the

directory is not changed.

3.8.6.3 Editing a directory entity
Both newly created directory entities and entities that already exist in the directory can be
edited and are not in the process of synchronization. For more information see chapter

Synchronization. When editing directory entities, the components described in chapter Entity

components can be set and changed.

3.8.6.4 Saving a directory entity
Saving a directory entity is the process where all the values created or changed during the

editing process are saved to the directory.

3.8.6.5 Discarding a directory entity

A directory entity is discarded if the user would not like to keep a newly created entity or an
entity they are editing. In both cases, the content in the directory is not changed, because
when an entity is edited, that entity’s last saved values remain in the directory, and a newly

created directory entity goes into the directory only once it has been saved.

3.8.6.6 Deleting a directory entity
The user can delete directory entities only if they are not in the process of synchronization.

For more information see chapter Synchronization. Deleting a directory entity is done by

marking the entity in the directory as deleted. A unique identifier is added to the »Account«
attribute, which enables another registration of the entity with the same »Account« value that

the entity had before deletion. Directory entity is not physically deleted from the directory.

A deleted user or user group no longer exists for the server. It still has to save their 32-hit
identifiers for attribute support and to ensure the uniqueness of the 32-bit identifiers used to

calculate effective rights in the ACL.

3.8.7 Synchronization

Synchronization of the internal server directory is a prerequisite for using external
authentication methods, such as LDAP and Kerberos. The synchronization server uses the
concept of plug-ins.

For any provider of remote directory services (e.g. Microsoft Active Directory, OpenLDAP, ..},
a user with appropriate rights (administrator) registers a plug-in and configures it for a
particular provider. For the plug-ins and synchronization to function properly, you have to set
the mandatory parameters for each plug-in. Detailed descriptions of all parameters for each

type of plug-in are given in the chapter Plug-ins.

The mandatory parameters for a generic LDAP and Active Directory plug-in:

o A URL to the server directory service.

e Username and password to identify the user that will be executing actions on the server.
If anonymous access is enabled, username and password are not needed).

e Base Distinguished Name or BaseDN). This name roughly determines the part of the
directory to be synchronized.

The Base Distinguished Name is not a mandatory piece of data; however, in combination
with the distinguished names of users and groups, it represents a key setting for the
proper functioning of synchronization.

e User Distinguished Name or UserDN and Group Distinguished Name or GroupDN are not
mandatory data. They are used when we want to additionally segment user and group
synchronization based on their distinguished names.

e Filters for searching for users and groups in the directory.

e |f the access to the remote directory uses a protected channel it is also necessary to

determine the path to the certificate storage to establish a protected channel.

Examples of distinguished name use:

o BaseDN = »DC=example, DC=com«, UserDN and GroupDN are not set.
Based on the settings all users and groups that are located in BaseDN will be synchronized.
o BaselDN = »DC=example, DC=coms«, UserDN = »OU=Users«, GroupDN is not set.
Based on the settings all users will be sought under »OU=Users, DC=example, DC=comx.
Groups will be sought under BaseDN, meaning under »DC=example, DC=comy.
o BaselDN = »DC=example, DC=coms«, UserDON = »OU=Users«, GroupDON = »OU=Groupss«.
Based on these settings all users will be sought under »OU=Users, DC=example, DC=com«, and

groups under »OU= Groups, DC=example, DC=com«.

Examples of simple search filters for Microsoft Active Directory:

o »(&(objectCategory=person) (objectClass=userl)«. The results of the filter are all objects of

category ‘person” and class “user” (all users).

o »lobjectCategory=groupl«. The results of the filter are all objects of category “group” (all groups).

The mandatory parameters for a generic SQL plug-in:
e A connection string, which contains the data for connecting to the server and database
(username and password, database name, etc.).
e The name of the driver used to communicate with the server (an example for an MSSQL
server: com.microsoft.sglserver.jdbc.SQLServerDriver).
e Filters for searching for users or groups (a SELECT sentence).
e (Other parameters which are mandatory for an individual SQL plug-in and which are

transferred through the configuration (the »Property« tag).

During the synchronization from the remote directory to the local server directory all entities
are marked as synchronized. At the same time the user with appropriate rights
(administrator) connects them with the provider of the directory service with which the entity

has been synchronized. For more information see chapter Entity components.

The synchronization of users and groups is conditional on the set of fields that are a part of the
synchronization. The synchronized fields can be modified only through synchronization, which
means that a user with rights (administrator) can’t modify them. Deleting synchronized users
or groups is also not possible because they are specifically labeled as synchronized during
synchronization.

If you want to edit data on users and groups, the user with rights has to turn off individual
fields in the synchronization settings or turn off the synchronization entirely for the given user

or group, which also enables you to delete the entity.

3.8.8 Plug-ins
The plug-ins for directory services allow user synchronization and authentication with external
services. Plug-ins can be divided into three groups:

e a plug-in for Active Directory

e ageneric LDAP plug-in

e ageneric SAL plug-in.

A plug-in for Active Directory enables synchronization and user authentication

(LDAP, Kerberos) with Microsoft Active Directory.

A generic LDAP plug-in also enables synchronization with other services (OpenLDAP...) and

LDAP authentication.

A generic SAL plug-in enables synchronization with SAL databases (MySQL, MSSQAL ...),

but doesn’t enable user authentication.

The user with rights configures plug-ins through an XML text located in the tag »Arguments«.
Each configuration must contain the tag »Class«, which represents the name of the class in
which the plug-in has been implemented.

The values are:
e com.imis.imisarc.server.aaa.impl.ActiveDirectory;
e com.imis.imisarc.server.aaa.impl.GenericLdapConnector;

e com.imis.imisarc.server.aaa.impl.GenericSALConnector.

Other plug-in configurations can be divided into three groups:
e Configuring the LDAP plug-ins;
e Configuring the SQL plug-ins;

e Configuring mappings.

3.8.8.1 Configuring the LDAP plug-ins
Tables with the tags common to both LDAP and Active Directory are shown below; they are

followed by a tags table for the Active Directory plug-in.

Tag name Description

LdapURL Ldap/ldaps server path.

LdapUsername The user on whose behalf the plug-in will perform gueries on
the server.

LdapPassword User password.

LdapAuthenticationType Ldap authentication name: NONE, SIMPLE, DIGEST-MD5,
CRAM-MDb5

LdapBaseDN Basic distinguished name.

LdapUserDN User distinguished name.

LdapGroupDN Group distinguished name.

LdapUserObjectFilter

User search filcer (with regard to the basic and user

distinguished name).

LdapGroupObjectFilter

Group search filcer (with regard to the basic and group

distinguished name).

LdapReadTimeout Server answer read time limit (in milliseconds).
LdapQueryTimeout Server query execution time limit (in milliseconds).
LdapPageSize Number of query results on a single page when using paging.

LdapRecursiveQueries

»True« for recursive queries, otherwise »false«.

SSLTSType The type of digital certificate storage if Idap is used via SSL.

SSLTSFile The path to the file that represents the digital certificate
storage.

SSLTSPassword The password to unlock the digital certificate storage.

SSLProtocols Supported SSL protocols (separated by commas).

LdapAuthenticationFilter

The Idap user authentication filter.

Table 38:

Common LDAP plug-in configuration labels

Tag name Description

KrbServicePrincipal | Kerberos service indicator.

KrbKeytablLocation | The location of the Kerberos keytab file.

KrbDebugMode »True« for Kerberos debug mode, otherwise »False« (debug mode

enables detailed authentication logging).

AccountAliasList The label is used to set Active Directory values for the synchronization
of the »Account« components and synonyms. For more information see
chapter Aliases.

By default, the »Account« value of the entity is synchronized with the
value of the »sAMAccountNamex« field, while synonyms aren’t
synchronized. The values in the label are separated by commas.

The first value represents the field for the synchronization with the
»Account« component, while the other values represent synonyms.

The tag can be adapted to the user or group synchronization by defining
the attribute »scope«, which can have the values »user« or »group«

(if this attribute is not present, it applies to both users and groups).

Example:

<AccountAliasList>sAMAccountName,userPrincipalName</AccountAliasList>

The »Account« of such a user will be set to the value of the
»sAMAccountNamex« field, and synonym to the value of the

»userPrincipalNamex« field.

Table 39: Configuration labels of the Active Directory plug-in

3.8.8.2 Configuring the SQL plug-in

Below is a table of the tags which can be used to configure SQL plug-ins.

Tag name Description

ConnectionString A string containing information about the server and about how to
connect to the server.

Example:

<ConnectionString>jdbc:sqglserver.//localhost. 1433,databaseName=testdb

</ConnectionString>

SqglDriver The name of the class in which the SAL driver has been implemented.

Example:
<SqlDriver>com.microsoft.sqlserver.jdbc.SGLServerDriver</SqlDriver>

UserQuery It represents the SAL sentence or the procedure callback which is
executed on user synchronization. The type is defined with the attribute
»type«, which can be set to the value »\QUERY« or »PROCEDURE«.

GroupQuery It represents the SAL sentence or the procedure callback which is

executed on group synchronization.

PageSize The number of query results on one side when using removal.

ReadOnlyConnection | »True« if the plug-in will be using read-only connections, otherwise

»False«.

Property This tag represents the »key« - »value« combination and is intended for
additional SQL driver configuration. The key represents the attribute
»key«, and the value is simply the tag value.

Example.
<Property key="user">sql user</Property>

Table 40: Configuration tags for SQL plug-ins

3.8.8.3 Configuring mappings

Mappings are a condition for the proper functioning of a generic LDAP and SQL plug-in.
Mappings determine how the data from an LDAP or SQL plug-in will be mapped to the entity
fields on the server. The administrator can specify his own keys but they have to be unigue.
If a mapping hasn’t been specified in the configuration, the plug-in returns the default value.
The following table shows the connections between the keys and the entity components, and

their default values if a mapping hasn’t been specified.

Key Entity componenet Default value
sys:dir:Account Account Empty string.
sys:dir:FirstName FirstName Empty string.
sys:dir:LastName LastName Empty string.
sys:dir:Description Description Empty string.
sys:dir:Email Email Empty string.
sys:dir:UUID The value is internal and is used as a | Empty string.

unique synchronization identifier.

sys:dir:SecurityClass SecurityClass Value »0«.

sys:dir:lcon Icon Empty string.

sys:dir:Delegates Delegates Empty value list.

sys:dir:Aliases

The value sets synonyms (the value
is synchronized for users only -
For more information see chapter

Aliases.

Empty value list.

sys:dir:GroupMembers

The value is internal and is used
when synchronizing and resolving
group memberships (the value is only

used when synchronizing groups).

Empty value list.

sys:dir:Flags:Enabled

Flags.Enabled

True.

sys:dir:Flags:Locked

Flags.Locked — this value is

synchronized for users only

False.

sys:dir:Flags:AuthExt

Flags.ExternalAuthenticationEnabled
-- this value is synchronized for

users only

True

sys:dir:Flags:AuthHTTP

Flags. HTTPAuthenticationEnabled
-- this value is synchronized for

users only

False

sys:dir:Flags:AuthSRPBA

Flags. SRPBaAuthenticationEnabled
-- this value is synchronized for

users only

False

sys:dir:Flags:AuthPSK

Flags.
PreSharedKeyAuthenticationEnabled
-- this value is synchronized for

users only

False

sys.dir:Flags:AuthAdv

Flags.
AdvancedAuthenticationEnabled --
this value is synchronized for users

only

False

Table 41: Configuring mappings

Each mapping must have a specified type of mapping (attribute »type«), which then determines

how the data in the mappings will be processed before synchronization. Optionally, we can use

the attribute »scope« to define whether the mapping applies to the synchronization of users or

groups or both (if no attribute is given, it applies to both). The following table shows the types

of mappings and their descriptions.

Type of mapping Description

STRING The value is presented as a string and is not
processed.

BINARY The value is coded in BaseB4.

BITFIELD The value is processed according to the value

»typeExt«; the result is either »true« or »falsex.

BOOLEAN The value is processed according to the value

»typeExt«; the result is either »true« or »falsex.

INT The value is processed according to the value
»EypeExt«; the result is a number in decimal

form.

EXPRESSION The value represents an expression for
evaluation, which is evaluated into a string or a

list of strings according to »typeExt«.

LDAP_AUTHENTICATION The value is used for LDAP authentication and is
not the subject of mapping.

DISTINGUISHED_NAME The value represents a distinguished name and
is not processed.

SQLQUERY The value represents an SQL query, whose
result will be evaluated into a string or a list of
strings.

SQLPROC The value represents an SQL procedure, whose

result will be evaluated into a string or a list of

strings.

Table 42: Types of mappings

Each type of mapping, whose value can be processed, can be expanded with the attribute
»EypeExte, in which we list the operations to be performed on the values. The following table

shows a list of supported operations for connection types.

Reserved ntypeExt« values Description

MASK Decimal numerical value that is used for »masking«

(executing AND operations).

RDX The basis for numerical conversion.

OFF Represents the testing bit position (the starting bit is
in the O position).

VAL A list of values that represent the »true« value
(values are separated with #).

NEG »True« negates the value, otherwise »falsex.

DEL The value represents the separation string for
separating values in the EXPRESSION type mapping.

REMEMPTY »True« means that empty strings are removed from
the results list; otherwise »falsex.

TRIM »True« means that strings in the results list are
trimmed (the leading and trailing spaces are removed);
otherwise »false«.

AGRKEY The value »true« denotes that the field value is a part of
the aggregation key, which is used for internal removal
in SAL queries.

SQLCOL The value represents the name of the SQL column from

which the data will be read.

Table 43: Values of the "typeExt" attribute

Each type of mapping has a limited set of »typeExt« values, which are implemented in a specific

order. The values for each type of mapping and the order are shown in the following table;

all »typeExt« values are optional, unless specified otherwise.

Type of mappings ntypeExt« values and order of implementation
STRING TRIM, REMEMPTY
BINARY TRIM, REMEMPTY
BITFIELD RDX, OFF (mandatory), NEG, TRIM, REMEMPTY
BOOLEAN VAL (mandatory), NEG, TRIM, REMEMPTY
INT NEG, MASK, TRIM, REMEMPTY
EXPRESSION DEL, TRIM, REMEMPTY
LDAP_AUTHENTICATION /
DISTINGUISHED_NAME /

SQLAQUERY

SQLCOL (mandatory), TRIM, REMEMPTY

SQLPROC

This type of mapping is not supported for fields

Table 44: The order of »typeExt« implementation based on the type of mapping

IMiS®/ARChive Server Manual Version 9.9.1810

3.8.8.4 Configuration examples
Below are a few examples of plug-in configuration. The following xml structure is an example of
configuring a generic LDAP plug-in for performing synchronization with an ActiveDirectory

server.

<Arguments>
<Class>com.imis.imisarc.server.aaa.impl.GenericL.dapConnector</Class>
<LdapURL>/dap://pot.do.primarnega.streznika</LdapURL>
<LdapURL >/dap://pot.do.sekundarnega.streznika</LdapURL>
<LdapUsername>uporabniskoime</LdapUsername>
<LdapPassword>geslo</L dapPassword>
<LdapAuthenticationType>simple</LdapAuthenticationType>
<LdapBaseDN>dc=my-domain,dc=com</LdapBaseDON>
<LdapUserDN>u=Userji</LdapUserDN>
<LdapGroupDN>ou=Grupe</LdapGroupDN>
<LdapUserObjectFilter>(objectClass=useri</LdapUserObjectFilter>
<LdapGroupObjectFilter>(objectClass=groupl</L dapGroupObjectFilter>
<LdapReadTimeout>12000</l dapReadTimeout>
<LdapGQlueryTimeout>6000</LdapQueryTimeout>
<LdapPageSize>256</LdapPageSize>
<LdapRecursiveQueries>true</LdapRecursiveueries>
<LdapAuthenticationFilter>(&,(objectCategory=personilobjectClass=userl/(
userPrincipalName="%s)(mail=%s)sAMAccountName=%sll)</LdapAuthenticationFilter>
<Field key="sys:dir-Account" type="string ">sAMAccountName</Field>
<Field key="sys.:dir:FirstName" type="string ">givenName</Field>
<Field key="sys.:dir:LastName" type="string ">sn</Field>
<Field key="sys.dir:-Description” type="string ">description</Field>
<Field key="sys:dir.-Email” type="string ">mail</Field>
<Field key="sys.dir-UUID" type="binary">objectGUID</Field>
<Field key="sys.dir:Flags.Enabled" type="bitfield" typeFxt="OFF=1,
NEG=true">userAccountControl</Field>
<Field key="sys.dlir:Flags.Locked" type="boolean" typeExt="VAL=0NEG=true"
scope="user">lockoutTime</Field>
<Field key="sys:dir:Aliases" type="string ">distinguishedName</Field>
<Field key="sys.dir.-GroupMembers" type="string" scope="group">member</Field>
</Arguments>

An example of configuring a generic SQL plug-in for performing synchronization with a MySQL

server (using SSL with the server storage of certificates):

2018 © Imaging Systems, Inc., All rights reserved. 222

IMiS®/ARChive Server Manual Version 9.9.1810

<Arguments>

<Class>com.imis.imisarc.server.aaa.impl.GenericSGALConnector</Class>

<ConnectionString>jdbc:mysql.//pot.do.streznika.3306/baza</ConnectionString>

<SqlDriver>com.mysaql.cj.jdbc.Oriver</SqlDriver>

<UserQuery type="query">SELECT * FROM directoryEntity WHERE type = "U"</UserQuery>

<GroupQuery type="query">SELECT * FROM directoryEntity WHERE type = "G"</GroupQuery>

<PageSize>256</PageSize>

<Property key="user">uporabniskoime</Property>

<Property key="password">geslo</Property>

<Property key="serverTimezone ">UTC</Property>

<Property key="useSSL ">true</Property>

<Property key="verifyServerCertificate">true</Property>

<Property key="trustCertificateKeyStoreUr!">file.////iarc/work/aaa/dummy _file</Property>

<Property key="trustCertificateKeyStoreType ">IAKS</Property>

<Field key="sys.:dir-Account" type="string ">account</Field>

<Field key="sys.dir:FirstName" type="string ">first_name</Field>

<Field key="sys.dir:LastName" type="string ">last. name</Field>

<Field key="sys.dir:UUID" type="binary">uuid</Field>

<Field key="sys.dir:Flags.Enabled"” type="boolean” typeExt="VAL=1">enabled</Field>

<Field key="sys.dir:Flags.l ocked" type="boolean" typeFxt="VAL=1">locked</Field>

<Field key="sys.dir:DistinguishedName" type="string ">id</Field>

<Field key="sys.dir:Aliases" type="sqlqguery" typeExt="sqlcol=alias" scope="user">SELECT * FROM
directoryEntityAlias WHERE dirld = "%sys.dir:DistinguishedName % "</Field>

<Field key="sys.dir:GroupMembers" type="sqlquery" scope="group"
typeExt="sqlcol=directoryld">SELECT directoryld FROM directorygroupmembership WHERE groupld =
(SELECT id FROM directoryentity WHERE account = "%sys.dir:Account% "I</Field>
</Arguments>

Below are examples of different configurations of mappings. The following table shows users on

an OpenLDAP server together with attributes and their values.

Attribute ncn«

Attribute

ntelephoneNumber«

Attribute

npostalCode«

Attribute

»uidNumber«

Attribute

rhomeDirectory«

test4 00000010 FF 6666 /home/test4
testbH 133546 1234321 63361 /home/testbH
testb 54321 1M112222 62784 /home/testB

Table 45: Example of user attributes and their values

Example 7: Simple configuration in which »cn« is mapped to »sys_dir:Accountg,

»homeDirectory« to »sys:dir:Description«, »uidNumber« to »sys:dir:UUID«, »telephoneNumber«

to »sys:dir.Email« and »postalCode« as »sys:dir:LastNamex«.

2018 © Imaging Systems, Inc., All rights reserved.

IMiS®/ARChive Server Manual Version 9.9.1810

<Arguments>
<Field key="sys.dir-Account" type="string ">cn</Field>
<Field key="sys.dir:Description” type="string ">homeDirectory</Field>
<Field key="sys.:dir:UUID" type="string ">uidNumber</Field>
<Field key="sys.dir-Email” type="string ">telephoneNumber</Field>
<Field key="sys.dir:LastName" type="string">postalCode</Field>

</Arguments>

Example Z: The configuration from the first example is changed by standardizing

»sys:dir:Description« as »BINARY«, and »uidNumber« as »INT« in a hexadecimal form.

The conversion to the decimal system is performed by specifying RDX=16 in »typeExt.

<Arguments>
<Field key="sys.dir:Account" type="string ">cn</Field>
<Field key="sys.dir:Description” type="binary">homeDirectory</Field>
<Field key="sys.dir:UUID" type="int" typeExt="ROX=16">uidNumber</Field>
<Field key="sys.dir-Email” type="string ">telephoneNumber</Field>
<Field key="sys.dir:LastName" type="string ">postalCode</Field>

</Arguments>

The results of the conversion for individual users are shown in the table below.

User nsys:dir:Description« nsys:dir:UUID«
test4 L2hvbWUvdGVzdDQ= 26214
testb L2hvbWUvdGVzdDU= 406369
testB L2hvbWUvdGVzdDY= 403332

Table 46: Results of the conversion (Example 2)

2018 © Imaging Systems, Inc., All rights reserved. 224

IMiS®/ARChive Server Manual Version 9.9.1810

Example 3: We add the mapping for »distinguishedName« to the configuration from Example 1,
and standardize it as »DISTINGUISHED _NAMEk«.

<Arguments>
<Field key="sys.dir-Account" type="string">cn</Field>
<Field key="sys.dir:Description” type="string ">homeDirectory</Field>
<Field key="sys:dir:UUID" type="string ">uidNumber</Field>
<Field key="sys.dir-Email” type="string ">telephoneNumber</Field>
<Field key="sys.dir:LastName" type="string ">postalCode</Field>
<Field key="sys.dir:DistinguishedName" type="DISTINGUISHED NAME"/>

</Arguments>

The results of the conversion for individual users are shown in the table below.

User ndistinguishedName«
testd uid=test4,ou=Users,dc=my-domain,dc=com
testb uid=testb,ou=Users,dc=my-domain,dc=com
testb uid=testB,ou=Users,dc=my-domain,dc=com

Table 47: Results of the conversion (Example 3)

Example 4. \We change the mapping for »sys:dir:UUID« for the configuration from the previous
example by using »"EXPRESSION«, which we compose from »distinguishedNamex,
»sys:dir:Description« and »uidNumber« (connected with a dash). Since »uidNumber« can’t be
addressed directly, we specify a new mapping with a unique key (i. e. »uid-number«), and this key

is then used in the definition of an expression.

<Arguments>

<Field key=\"sys.dir:Account\" type=\"string\ ">cn</Field>

<Field key=\"sys.dir:Description\" type=\"string\ ">homeDirectory</Field>

<Field key=\"sys.:dir:UUID\ " type=\"expression\ ">%sys:dir:DistinguishedName %- %sys.dir:Description %-
%uid-number%</Field>

<Field key=\"sys.dir:Email\ " type=\"string\ ">telephoneNumber</Field>

<Field key=\"sys.:dir:LastName\" type=\"string\ ">postalCode</Field>

<Field key=\"sys.dir:DistinguishedName\" type=\"DISTINGUISHED NAME\"/>

<Field key=\"uid-number\" type=\"string\ ">uidNumber</Field>

</Arguments>

2018 © Imaging Systems, Inc., All rights reserved. 225

The results of the conversion for individual users are shown in the table below.

User nsys:dir:UUID«
test4 uid=test4,ou=Users,dc=my-domain,dc=com-/home/test4-6666
testbH uid=testb,ou=Users,dc=my-domain,dc=com-/home/test5-63361
testB uid=testB,ou=Users,dc=my-domain,dc=com-/home/test6-62784

Table 48: Rezultati pretvorbe (Primer 4)

Example 5: We would like to disable users that have set »homeDirectory« on the Idap server
to»/home/test4« or »/home/testb«. The configuration from the previous example is added a
mapping for »sys:dir;Flags:Enabled«, where we specify the desired values, and the final result is

negated.

<Arguments>

<Field key="sys.dir:Account” type="string ">cn</Field>

<Field key="sys.dir:Description” type="string ">homeDirectory</Field>

<Field key="sys.:dir:UUID" type="expression">%sys:dir:DistinguishedName %- %sys.dir:Description %-
%uid-number%</Field>

<Field key="sys.dir-Email” type="string ">telephoneNumber</Field>

<Field key="sys.dir:LastName" type="string ">postalCode</Field>

<Field key="sys.dir:DistinguishedName" type="DISTINGUISHED NAME"/>

<Field key="uid-number" type="string ">uidNumber</Field>

<Field key="sys.dlir:Flags:Enabled” type="boolean”
typeExt="VAL=/home/test4#/home/test5NEG=true">homeDirectory</Field>

</Arguments>

Example 6: We wish to add synonyms to the users from the previous example by adding a
mapping for »sys:dir;Aliases«. If we want more synonyms, then we specify the mapping as
»EXPRESSION« and specify a separation character (DEL) in »typeExt«. Such an expression will
first be divided to subexpressions according to the separation character, and then each
subexpression will be evaluated. A condition for a successful evaluation of the whole expression

is that each subexpression has the same number of results.

IMiS®/ARChive Server Manual Version 9.9.1810

<Arguments>

<Field key="sys.dir-Account" type="string ">cn</Field>

<Field key="sys.dir:-Description” type="string ">homeDirectory</Field>

<Field key="distinguishedName" type="DISTINGUISHED NAME"/>

<Field key="uid-stevilka" type="string ">uidNumber</Field>

<Field key="sys.:dir:UUID" type="expression "> %distinguishedName %- %sys.dir:Description %- %uid-
stevilka%</Field>

<Field key="sys.dir-Email” type="string ">telephoneNumber</Field>

<Field key="sys.dir:LastName" type="string ">postalCode</Field>

<Field key="sys.dir:Flags.Enabled" type="boolean"
typeExt="VAL=/home/test4#/home/test5NEG=true ">homeDirectory</Field>

<Field key="sys.dir:Aliases" type="expression"
typeExt="DEL=#">%sys.dir:DistinguishedName %# %sys.dir:Description %# %uid-stevilka % </Field>

</Arguments>

Example 7: This is an example of a configuration for user and group synchronization with

Microsoft Active Directory.

<Arguments>

<Field key="sys.dir:Account" type="string ">sAMAccountName</Field>

<Field key="sys.dir:FirstName" type="string ">givenName</Field>

<Field key="sys.dir:LastName" type="string ">sn</Field>

<Field key="sys.dir:Description” type="string ">description</Field>

<Field key="sys.dir-Email” type="string ">mail</Field>

<Field key="sys.dir:UUID" type="binary">objectGUID</Field>

<Field key="sys.dir:DistinguishedName" type="string ">distinguishedName</Field>

<Field key="sys.dlir:Flags:Enabled"” type="bitfield"
typeExt="OFF=1NEG=true">userAccountControl</Field>

<Field key="sys.dir:Flags.Locked" type="boolean" typeExt="VAL=0,NEG=true"
scope="user">lockout Time</Field>

<Field key="sys.dir:Aliases" type="string ">userPrincjpalName</Field>

<Field key="sys.dir.-GroupMembers" type="string" scope="group">member</Field>

</Arguments>

2018 © Imaging Systems, Inc., All rights reserved. 227/

3.9 Backup copies and restoring data

Backup copies or backups must be regularly made to ensure effective data security.

It is important that backup copies do not fall into the hands of unauthorized persons, and that
they remain unharmed in the event of an accident. Backup copying reduces the risk of data loss
due to a technical malfunction of the backup media, program errors, natural disasters,

unauthorized access, human error, ...

Backup copies enable data to be restored and returned to a previous state.

IMiS®/ARChive Server enables backup copies and restoration of the following:
e Documentary records.

e The classification scheme in its entirety or only selected classes, folders and documents

of the classification scheme.
e Metadata.
e Audit trails.
e Digital certificates.
e Access Control Lists (ACLs).

e Server directory.

The table below shows tables in the database with a description of their content for creating

backups and data restoration.

Table Description
ACLENTRY Entries for the ACL.
ACLENTRYVALIDITY Time limits of access rights.
ATTRIBUTE Attributes defined in IMiS®/ARChive Server.
ATTRIBUTEVALLE A table linking an attribute, a value and the entity to

which the value belongs.

ATTRIBUTEVALUEBINARY

This table contains binary attribute values.

ATTRIBUTEVALUEDATETIME This table contains date values with a time component.
This table contains a real (rational) number in a floating
ATTRIBUTEVALUEDOUBLE)) o
point with a double precision.
ATTRIBUTEVALUEFILE This table contains values about files.
ATTRIBUTEVALUEINT32 This table contains signed 32-bit integers.

ATTRIBUTEVALUEINTB4

This table contains signed B64-bit integers.

ATTRIBUTEVALUEINT128

This table contains signed 128-bit integers.

Table

Description

ATTRIBUTEVALUEINT128IDX

This table contains indexed, signed 128-bit integers.

ATTRIBUTEVALUESTRING

This table contains unlimited strings of UTF-8
characters (they are limited by the capacity of the

platform).

This table contains strings of UTF-8 characters 10 bytes
ATTRIBUTEVALUESTRING10)

in length.

This table contains strings of UTF-8 characters 20
ATTRIBUTEVALUESTRING20)

bytes in length.

This table contains strings of UTF-8 characters 30
ATTRIBUTEVALUESTRING30

bytes in length.

ATTRIBUTEVALUESTRING40

This table contains strings of UTF-8 characters 40
bytes in length.

ATTRIBUTEVALUESTRING50

This table contains strings of UTF-8 characters 50
bytes in length.

ATTRIBUTEVALUESTRING100

This table contains strings of UTF-8 characters 100
bytes in length.

ATTRIBUTEVALUESTRING200

This table contains strings of UTF-8 characters 200
bytes in length.

ATTRIBUTEVALUESTRING20IDX

This table contains indexed strings of UTF-8 characters
20 bytes in length.

ATTRIBUTEVALUESTRING30IDX

This table contains indexed strings of UTF-8 characters
30 bytes in length.

ATTRIBUTEVALUESTRING40IDX

This table contains indexed strings of UTF-8 characters
40 bytes in length.

ATTRIBUTEVALUESTRING50IDX

This table contains indexed strings of UTF-8 characters
50 bytes in length.

ATTRIBUTEVALUESTRING100IDX

This table contains strings of UTF-8 characters 100
bytes in length.

ATTRIBUTEVALUESTRING200IDX

This table contains strings of UTF-8 characters 200
bytes in length.

ATTRIBUTEVALUEUINT32

This table contains unsigned 32-bit integers.

ATTRIBUTEVALUEUINTB4

This table contains unsigned 64-bit integers.

ATTRIBUTEVALUEUINT128

This table contains unsigned 128-bit integers.

ATTRIBUTEVALUEUINT128IDX

This table contains indexed, unsigned 128-bit integers.

This table contains the digital certificates located in the

DIGITALCERTIFICATE o B
server’s digital certificate store.
This table contains the values of counters for automatic
COUNTER o ,
classification code generation.
DIGITAL CERTIFICATE This table contains digital signatures.

DIRECTORYENTRY

This table contains the entities (users or user groups] in
the server directory.

Table

Description

DIRECTORYENTRYALIAS

This table contains aliases for the entities in the server
directory.

DIRECTORYENTRYGROUP

This table contains information on user group members.

This table contains information on server entities

ENTITY
(classes, folders, documents).
This table contains information about classes on the
ENTITYCLASS
server.
This table contains information about documents on the
ENTITYDOCUMENT
server.
This table contains information about folders on the
ENTITYFOLDER
server.
PROFILE This table contains information about HSM profiles.
PROPERTY This is a generic table with settings.
TEMPLATE This table contains server templates.
This table contains links between templates and their
TEMPLATEATTRIBUTE)
attributes.
This table contains information about binding between
TEMPLATEBIND

server templates.

ARCHIVALINFORMATIONPACKAGE

This table contains archival information packages (AIPs)

ARCHIVALINFORMATIONPACKAGEQUEUE

This table represents the AIP queue.

CREATEAIPQUEUE This table represents queue for creating AlPs.

This table contains information about the time stamping
AIPJOBTIMESTAMP

process.

This table contains information about revoked digital
REVOCATIONDATA

certificates.

CONTENTPROCESSINGQUEUE

This table contains information for indexing and content

conversion.

CONTENTPROCESSINGERROR

This table contains information on content that was

unsuccessfully indexed or converted.

TIMESTAMP This table contains timestamps.

VOLUME This table contains information about HSM volumes.

This table contains the statuses, significance or
LOOKUPTABLE impor.tance ahd s§curity c.:Ia-ss.,es of entitie-s. It also

contains email delivery priorities and physical record
statuses.

HASH128 This table contains hashes 128 bits in length.

HASH160 This table contains hashes 160 bits in length.

HASH224 This table contains hashes 224 bits in length.

HASH256 This table contains hashes 256 bits in length.

HASH384 This table contains hashes 384 bits in length.

HASH512 This table contains hashes 512 bits in length.

Table Description

This table contains links between information about
REVOCATIONDATATIMESTAMP . e L
revoked digital certificates and their timestamps.

This table contains links between information about
REVOCATIONDATADIGITALSIGNATURE o u o)
revoked digital certificates and their digital signatures.

This table contains information on connections between
ENTITYRETENTIONDISPOSITIONSCHEDULE , , o o
retention dispositions and entities.

TIMESTAMPARCHIVALINFORMATIONPACK | This table contains Archival Information Packages (AIPs)

AGE for time stamping.
This table contains the binary or Base64 encoded data
CERTIFICATEBODY . - .
representing digital certificates.
FILEDESCRIPTION This table contains descriptions of content.
ATTRIBUTEVALUENULL This table contains entities with »null« value attributes.
This table contains reviews that are in the preparation
REVIEWQUEUE) .
and implementation phase.
This table contains information about content dependency
CONTENTBIND

in an entity.

The table contains a list of connections between users and
DIRECTORYENTRYDELEGATE

their delegates.

Table 49: Tables with a description of data for backups and restoration

IMiS®/ARChive Server additionally enables the automatic generation of secure backups of all
files important for operations and consistency. These files encompass the data collection
where IMiS®/ARChive Server stores metadata about records, audit trail data, settings and
archival record files, among other things.

As a software producer, we recommend that our customers manage secure backup copies
and restoring of the archive server with a professional client/server tool (for example,

IBM Tivoli Storage Manager, HP Data Protector, CA ARCserve).

3.9.1 Creating backup copies
A secure file storage client must be installed on IMiS®/ARChive Server to create secure

backup copies. The client’s location depends on which client/server tool you are using.

3.9.1.1 Backup copy settings
Backup copy settings depend on which client/server tool you are using. In most cases,

a description of the settings can be found in the tool's documentation.

Basically, there are three types of backup copying:
e Full backups, which encompass all data.
e Incremental backups, which encompass any data that has changed since the last backup
was made.
o Differential backups, which encompass any data that has changed since the last full

backup.

In combination with the dbtool tool, any of these backup types can be used with IMiS®/ARChive

Server.

3.9.2 Restoring data

Restoring archived documents in IMiS®/ARChive Server depends on the server status and the
desired results of server data restoration.

If the usefulness of the data that remains on the hard drive is in question, or if you have the
option of restoring to a state prior to the malfunction of the hard drive, we advise

you to contact our technical support staff at support@imis.eu.

Restoring data from a backup ensures the integrity of the data, including the audit trail.

Restoring data in IMiS®/ARChive Server depends on the server status and the desired results
following data restoration. To successfully restore data, the server must at least save backup
copies for:
The server database (the default location in the directory is /iarc/db).
Server volumes, including all content, recursively (the default location in the directory is
Jiarc/vol).

The server configuration file iarc.conf (the default location in the directory is/etc).

A full backup can be achieved if, besides the minimum requirements, the backup also saves:
The /iarc/webadmin directory and all its content, recursively.
The /iarc/imisarc directory and all its content, recursively.
The /etc/init.d/iarcd file.

The /iarc/log/iarc directory and all its content.

mailto:support@imis.eu

3.9.2.1 Data restoration settings

When restoring data, the first step is to obtain the most recent saved text file with data from
the database and the content of the server volumes. The user should note that the access
right settings for the user in whose name the server is being booted are correct

(the default user is iarc, the chown or chmad tools can be used to change owner rights).

The process for restoring the volumes is as follows:
o [f the old content of the volumes still exists, (the default directory location is /iarc/vol)
it is deleted.
e The user copies the volume objects from the backup to the server volumes.

e Access rights (Read and Write rights) must be set to copy objects.

The server database restoration process is as follows:

e The user copies the blank server database to the server location (the default directory
location is /iarc/db).

o Read and Write rights are set on the server database.

e The database text files from the backup are copied to a temporary location on the hard
disk.

e Read rights are set for the text files.

e The server database is restored using the dbtool tool. Individual tables can be restored
using the —t parameter, or the —a parameter can be used to import data to all tables for

which text files exist. For more information see chapter Configuration.

3.9.3 Example

When creating backups of IMiS®/ARChive Server data, the possibility of data loss or partial
data corruption in the backup itself, as well as the possibility of partial data corruption,

must be taken into account. Best practices therefore also include creating backup copies and
storing duplicates at a remote location. Backups and any copies should be stored in a suitably
secured, fireproof location. The possibility of complete data loss can also be mitigated by

creating a suitable plan for creating and storing backups over longer periods.

Example: IMiIS®/ARChive Server backups can be created daily.
The original backups are stored in a fireproof cabinet at the same location as the server
and copies of the backups are stored in a safe at a remote location. The backup copies made at the end

of a week, month and year are stored in the safe.

The duration of their storage depends on the durability of the media and the usefulness of the backed-up

content.

The usefulness of backups must also be checked periodically.

Data from a backup copy is restored at another location and compared with source data from
IMiS®/ARChive Server. The plan for making and storing backups must be periodically checked,
or at least when essential changes occur, such as replacing servers, media or infrastructure,

which directly impact events linked to IMiS®/ARChive Server. The plan is generally checked by

the IT systems auditor, who issues an opinion.

3.9.4 Problems restoring data

If the usefulness of the data that remains on the hard drive is in question, or if you have the
option of restoring to a state prior to the malfunction of the hard drive, we recommend you
contact the technical support staff of the producer of IMiS®/ARChive Server.

The examples below present problems that could occur when restoring data.

Problem 1.
When restoring data by importing with dbtool, the following error is returned (the text file can

have a different name and structure, depending on the tables being restored in the database):
Using 'sl_SL.UTF-8' locale settings.

Document Root: /iarc/db/

Port: 21553

attribute.txt file, open error 13: Permission denied.

Import command completed with 1 error(s).

Solution for problem 1. Access rights have not been correctly set for the text files.

The user in whose name the server is running does not have Read rights for the text files
(the default user is iarc). The solution is correctly setting access rights for the text files and

retrying the data restoration process.

Problem 2:

When restoring data by importing with dbtool, the following error is returned:

Using 'sl_SL.UTF-8' locale settings.

Document Root: /iarc/db/

Port: 21553

Error; Unable to move to requested record (dberr#-940) while going backwards! (file = RaimaKeylterator.cpp, func =

moveTo, line = 200)

Solution for problem Z: Access rights have not been correctly set for the server database.

The solution is setting Read and Write access rights in the server database for the user in
whose name IMiS®/ARChive Server will be started.

Once the correct settings have been entered, restoration should proceed normally.

Problem 3:
When restoring data by importing with dbtool, the following error is returned (the name of text

file and table values can differ, depending on the tables being restored in the database):

Using 'sl_SI.UTF-8' locale settings.

Document Root: /iarc/db/

Port: 21553

Importing attribute.txt (3194 bytes) to ATTRIBUTE ... Error; Tried to insert duplicate key into table 10008! (file =
RaimaDataSet.cpp, func = InsertObject, line = 207)

Solution for problem 3: The server database to which the user is attempting to import the

data already contains data identical to the data in the text files.

There are multiple solutions for this error:

e Replacing the server database with a blank one and retrying the data importation.

e The individual table for which the error described above was returned when importing
data is deleted (the init command in the dbtool can be used), then the data importation
process is repeated for that table (not applicable for the audit trail, which cannot be
deleted).

¢ When importing using dbtool, the —o option can be used to overwrite any existing data in

the database with data from the text files.

Example: A command for importing all text files with the overwrite option:

su - iarc -s /bin/bash -¢ 'cd /opt/IS/imisarc 8&& ./dbtool -f /etc/iarc.conf -w /iarc/db/ -o -a imp"

3.10 Storage

The content of the entities is saved on HSM profiles and volumes (Hierarchical Storage
Management). HSM is a hierarchically designed system for storing data in which the frequently
accessed content is stored on faster media, and the infrequently accessed content is stored
on slower media (more information:

https://en.wikipedia.org/wiki/Hierarchical storage management).

https://en.wikipedia.org/wiki/Hierarchical_storage_management

The profiles represent a logically concluded HSM integrity, in which the individual volumes are
sorted in tiers according to speed (from fastest to slowest). The volumes represent data

carriers with which IMiS®/ARChive Server operates.

3.10.1 Profiles

The profiles represent a logically concluded HSM integrity. Besides basic information (name,
description), a profile also contains the total size of all volumes that belong to the profile,
the total occupied space, the total number of contents on all volumes, and the following

properties that are a prerequisite for the functioning of the profile:
¢ »ReadOnly« — contents on volumes that belong to a profile can’t be edited.

o »WORMc« (write once read many) — contents on volumes that belong to a profile can be

created, but can’t be edited.

e »StopAddingObjects« - contents on volumes can be read and edited, but new contents

can’t be added.

We can set a class to the profile and limit the content that will be stored on the profile’s
volumes. If a profile has a specific class, then only the contents of the entities that contain
entities of the set class will be stored on the volumes. If the class is not specified, the profile is
valid for the entire archive. The succession of the volumes on the profile (within the same level)
can be changed. This way the administrator can control the availability of the volumes of the

profile.

An example of profile configuration:

<nsT1:Profile xsitype="ns1:S5torageProfile">
<ns1:Name xsi:type="xsd:string ">Dokumenti</ns1:Name>
<ns1:0bjects xsitype="xsd:unsignedint">1095174</ns1:.0bjects>
<ns1:Size xsi:type="xsd:unsignedlong">51539607552</ns1:5ize>
<nsi.Used xsiitype="xsd:.unsignedlLong">44696233984</ns1.Used>
<ns1.ReadOnly xsi:type="xsd:boolean">false</ns1:ReadOnly>
<ns1:WORM xsi:type="xsd:boolean">false</ns1:.WORM>
<ns1.S5topAddingObjects xsi:type="xsd.boolean">false</ns1.5topAddingObjects>
<ns1:Volume level="0">vol20</ns1:Volume>
<ns1:Volume level="0">vol0O6</ns1:Volume>

<nsi:Volume level="0">vol05</ns1:Volume>

<nsT:Volume level="0">vol00</ns1:Volume>
<nsT1:Volume level="0">volO1</ns1:Volume>
<nsT:Volume level="0">volO2</ns1.Volume>
<ns1:Class xsitype="ns1.Entityld" type="ClassificationCode"/>

</ns1.Profile>

»Name« tag: The content of the label contains the name of the profile.

nObjects« tag: The content of the label contains the number of contents on all volumes of the

profile.

nSize« tag: The content of the label contains the total size of all volumes of the profile
(in bytes).

nUsed« tag: The content of the label contains the total size of the occupied space on all

volumes of the profile (in bytes).

nReadOnly« tag: The value »True« represents a profile that only allows content to be read.

The value »False« also allows creating and editing content (depends on the other profile

properties).

»WORMU« tag: The value »True« represents a profile that only allows creating and reading

content. The value »False« also allows editing content (depends on the other profile properties).
»StopAddingObjects« tag: The value »True« disables creating new content on the profile’s
volumes. The value »False« enables creating new content (depends on the other profile

properties).

»Volume« tag: The value of the label represents the name of the volume assigned to the

profile. The »level« attribute represents the HSM level of the volume, while the succession of

labels represents the succession of volumes of the profile.

nClass« tag: The value of the label represents the class identifier to which the profile is
assigned. The »type« attribute represents the type of identifier.

3.10.2 Volumes

Volumes represent data carriers with which the server operates. Each volume contains a
definition, an absolute path to the file system where the content will be physically stored.

In addition, volumes also contain information about their size, profile, number of the content per
volume, occupied space, »ReadOnly«, "?WORM« and »StopAddingObjects« settings (chapter
Profiles) and the information whether the volume is mounted or not. If the volume is not
mounted, then the requests for accessing content on such volume are rejected.

The volume can be changed between profiles, but only if it is empty. Below is described an

example of the volume configuration.

<ns1.Volume xsi:type="ns1:Storage\/olume">
<nsi.Name xsitype="xsd:string">vol05</ns1:.Name>
<nsT:Definition xsi:type="xsd:string">/iarc/vol/vol05</ns1.Definition>
<ns1:Profile xsi.type="ns1:5torageVolumeProfile">
<ns1:Name xsi:type="xsd:string">Dokumenti</ns1:Name>
<nsT:Level xsi:type="xsd:unsignedByte">0</ns1:Level>
<nsi.Sequence xsi:type="xsd:unsignedint">2</ns1:Sequence>
</ns1:Profile>
<ns1.0bjects xsi:type="xsd:unsignedint">37212</ns1.0bjects>
<nsi1.Size xsi.type="xsd:unsignedlong">8589934592</ns1:5ize>
<ns1:Used xsi:type="xsd:unsignedlong">8411480064</ns1.Used>
<ns1:ReadOnly xsi:type="xsd:boolean">false</ns1:ReadOnly>
<ns1:WORM xsi;type="xsd:boolean">false</ns1:WORM>
<ns1.StopAddingObjects xsi:type="xsd-boolean">false</ns1:5topAddingObjects>
<nsi-Mounted xsi:type="xsd:.boolean">true</nsi1.Mounted>

</ns1:Volume>

nName« tag: The value of the label represents the name of the profile.

»nDefinition« tag: The value of the label represents the absolute path to the file system where

the content will be physically stored.

»Profile« tag: The label contains the profile name, HSM level and succession in the profile

where the volume is located.

»Objects« taq: The value represents the number of contents on the volume.

nSize« tag: The value represents the size of the volume (in bytes).

nUsed« tag: The value represents the occupied space on the volume (in bytes).

»ReadOnly« taq: The value »True« represents a »read-only« volume. The value »False« means
the administrator can create and edit contents on the volume (depends on the other volume

properties).

»WORMU« tag: The value »True« represents a volume that only allows creating and reading
content. The value »false« also enables editing content (depends on the other volume

properties).

nStopAddingObjects« tag: The value »True« disables creating new content on the volume.

The value »False« enables creating new content (depends on the other volume properties).

»Mounted« tag: The value »True« means the volume is mounted and allows serving stored
content. The value »False« means the access to the content is not possible. Creating new

content is also not possible.

3.11 Versioning

Versioning is a process used to create new attribute values on an entity. This applies if the
attribute on the template is set to »versionable«. For more information see chapter Templates.
The IMiS®/ARChive Server enables the versioning of attribute values on documents.

The values of versionable attributes change with each version, while the values of attributes

that are not versionable stay the same in all versions.

When creating a new version, the values of versionable attributes are assigned a new version
sequence number. The highest number of versions for an individual document is limited to
65535. The current document version represents the sequence number of the version whose

attributes were changed the last time the document was saved.

The versioning process consists of three operations:
e (Checking out a draft.
e (Checking in a draft.

e Discarding a draft.

The draft is a copy of an original document which is visible only to the owner (user or group of
users listed in the attribute »sys:0Owner«) and to the user with rights (administrator) with the
»ManageDraft« role. These users can perform check-in or check-out operations on a draft.
Editing and saving operations can also be performed on a draft, and the list of access rights
can be modified. All other operations are not allowed. When checking out a draft, the source
document is locked for editing and stays locked until the draft is either checked in or discarded.
Checking in a draft enables the creation of a new version or overwrites the current version,
while discarding the draft deletes the draft.

The entire versioning process is shown in the following figure.

Dokument

Atribut A Atribut B
(verzionabilen) (ni verzionabilen)
- rednost "ABC” (1) - vrednost "12345” Ustvarjanje nove verzije ali Objava o Odklep
~vrednost_123_ (2) prepis aktualne verzije delovne ®| dokumenta
-vrednost "+++" (3) kopije
-vrednost "2 (4) Atribut C
-vrednost +y” (5) (ni verzionabilen) A
-vrednost "a1+" (6)
-vrednost™?L" - (7) -vrednost "Janez”
Aktualna verzija: 4
» Zavriba
Osnutek » osnutka
Uspesno
zaklepanje lzdelava
dokumenta? osnutka
Urejanje in
shranjevanje
osnutka, |
spreminjanje
Napaka liste dostopnih
pravic

Image 33: Versioning process

4 SYSTEM REQUIREMENTS

4.1 Hardware

The servers available on the market today for the most part fulfill the requirements of
IMiS®/ARChive Server, as it requires few resources and therefore can also function without
problems in virtual environments. It is however necessary to pay attention to the server
architecture and to harmonize it with one of the architectures supported by the product.

These are primarily 32- and 64-bit versions of Intel x86 platforms.

4.1.1 Planning server processor power
When selecting processor power, attention must be paid to the anticipated server workload
(number of clients, number of parallel user sessions, average size of archived content,

use of an audit trail, etc.).

In light of the current functional properties of the product, a number of mid- and high-
performance processors available on the market enable a quality operating environment.
The recommended requirements of the operating system usually serve as a guide when
selecting processing power.

In a hypothetical system with 500 users and an average of 200 views per day, and with an
average archived content size of 100 kB, even in the event of simultaneous use by all users,
and even if these users all perform transactions in the same period, one Xeon QuadCore
processor with a mid range frequency or one processor from the Intel Core i5/i7 family of

processors should be sufficient.

4.1.2 Planning server memory capacity
When planning RAM size for IMiS®/ARChive Server, the following must be taken into account:
Operating system requirements.
Basic server requirements (to function, the server will need around 512 MB.
Number of simultaneous users; every connection will require around 256 KB.
The minimum recommended RAM size is equal to the sum of 512 MB, required by the server

and the minimum RAM size required by the producer of the operating system.

The recommended RAM size is equal to the sum of the RAM needed by the operating system
services plus 1024 MB (1 GB) for IMiS®/ARChive Server.

4.1.3 Planning server hard disk capacity

When planning server hard disk capacity, the following must be taken into account:
Operating system requirements.
Anticipated daily object growth increments.
Anticipated object growth as a result of the conversion of legacy archives to digital form.
Average object size.

Anticipated server use time (for example, 5 years).

The objects IMiS®/ARChive Server stores in its volumes can be of different types and can come
from different computing environments.

Objects scanned using IMiS®/Scan with a resolution of 300 PP, in black and white

(1 bit of color depth), using the default compression method (CCITT G4 T6) take up an average
45 KB per scanned page. The use of other compression methods typically increases color

depth and resolution and, as a result, object size (see table below).

Color depth Black and white Grayscale (8 bit) | Color (24 bit)
(1 bit)

None 605 KB 5 MB 15 MB
CCITT G3 85 KB X X
CCITT G4 T6 45 KB X X
JBIG 36 KB X X
JBIG 2bit X 84 KB X
JBIG 3bit X 165 KB X
JBIG 4bit X 420 KB

Packed bits 109 KB 5MB 15 MB
LZw 75 KB 3.2 MB X
Packed bits 8 bit X X X
Packed bits 24 bit X X X
ZIP 56 KB 3 MB 9 MB
Wang JPEG X 315 KB 363 KB
Sequential JPEG X 315 KB 360 KB
Progressive JPEG X 310 KB 334 KB

Table 50: Average scanned document sizes using different scanning methods

When selecting a suitable compression method, keep in mind that the transfer of larger
objects through the computer network requires greater bandwidth and can affect the

responsiveness of the network.
We advise against the use of grayscale and color scanning, as most current scanners
for capturing documents use advanced methods and filters for graphic processing to ensure

the optimal quality of scanned documents.

We recommend the use of disks with appropriate data protection and scalability.

We recommend the use of up-to-date disk controllers that enable caching for reading and
writing. The caching should provide autonomous charging support or should be performed
using flash memory (EEPROM]) technology that can store data without electricity,

unlike the static RAM older RAID drivers are equipped with.

Disks should be merged in a redundant disk array. To enhance efficiency, we recommend a
RAIDS5 type disk array with an additional backup disk.

We advise against using disks that could be accessed by IMiS®/ARChive Server through the
local netwaork, for example NAS (Network Attached Storage) or disks located on another

server with which IMiS®/ARChive Server interacts using CIFS, NSF and similar protocols.

4.1.4 Communication channels

IMiS® clients communicate with IMiS®/ARChive Server through network port 16807

if different settings have not been entered in the “/etc/iarc.conf’ configuration file.
Communication through this port must be enabled, and rules in any firewalls or other active
network programs should allow IMiS® to set up a client-server connection; server-client

connections are not foreseen/necessary.

4.1.5 Connecting to network hardware

We recommend using redundant connections and connecting to the local network back bone
with as few intermediaries as possible. It is best for the server to be connected directly to the
network switch. The network protocol between IMiS® clients and IMiS®/ARChive Server is
optimized for 32 KB data packets (reading/writing archived content) and smaller command
packets.

An individual network packet can exceed 32 KB if the request or request reply so demand

(greater data volume in a request).

All communication between the server and the client is compressed using GZIP,
ensuring high throughput. Development-phase testing and observations from large production

systems revealed a bottle neck in the width of communication channels and hardware.

4.1.6 Administrator rights
The rights the IMiS®/ARChive Server administrator requires for their work are equivalent to

those of the root user.

The server administrator typically assigns rights; these rights must be sufficient for
installation, upgrading and server administration.

The administrator does not require privilege rights for their work.

During installation, the IMiS®/ARChive Server installation script creates a iarc user account
and an iarc user group with which all processes are launched on the server.

This means that in the event of an attack through some error in the server’s application code,

it will not be possible for the attacker to obtain the root user’s rights.

4.1.7 Managing hardware operations
Most hardware manufacturers include a system health monitoring system with their servers

(i. e. IBM Tivoli, HP Insight Systems Manager, Dell OpenManage).

The use of such a system is wise when hardware operation problems occur or when system
managers require data about server operations. It is also good if the management system

enables the reporting of system operation errors via mobile phones or email.

4.1.8 Minimum requirements

e A server with an Intel Pentium x86 ali x86_864 processor running at 800Mhz or a
compatible x86 architecture (consult minimum requirements for the installation
platform - operating system).

¢ 1GB RAM (consult the minimum requirements for the operating system and add 512
MB).

e Suitable disk capacity for the anticipated volume of archived content; a minimum 1 GB for
server operations.

e Access to a network via TCP/IP protocol (IPv4 or IPvB).

e Any hardware that provides support for the operations of the Linux operating system

with the above listed distributions in network mode.

4.1.9 Recommended requirements
e Server with an Intel Xeon ES/E7 or Xeon S5xxx/Bxxx/7xxx (x86_64) multicore processor
running at 2GHz (or better).
e 4GB or more high-frequency SDRAM (DDR3/DDRA4).

e Fast motherboard with a high-frequency Front Side Bus (1GHz or faster).

e Volumes on RAID5 logical disks/partitions (disk space calculated 3 to 5 years in advance).
e SCSI/SAS controllers with write-back cache capabilities (up to 40% greater efficiency),
a 128MB cache or larger with battery backup or flash memory (for power outages).*
e High-speed SCSI/SAS disks (10k/15k RPM) with appropriate caching.*
¢ Redundant power supply with a cooling system.

e Redundant network connection at 1Gbps or more with the IPv4 or IPvB protocol.

Note:

* The disk subsystem can be replaced with suitable SAN network volumes that are comparable to
recommended local disk capacities in terms of performance.

* The product also functions normally in world renowned virtual environments such as V/Mware
ESX/ESXi, Microsoft Hyper-V, Oracle VM and others if appropriate virtual resources are provided to
facilitate a performance environment comparable to that achieved using the recommended hardware

listed above.

4.2 Software

4.2.1 Operating systems
IMiS®/ARChive Server functions on a x86/x86_64 operating system and on the following
derivatives of Red Hat and SuSE distributions:

RHEL 4.x

RHEL 5.x

RHEL B.x

CentOS 4.x

CentOS 5.x

CentOS B.x

SLES 11.x

SLES 12.x

OpenSuSE 11.x

OpenSuSE 12.x.

4.21.1 Recommended requirements

Linux OS (RedHat EL/Fedora, SUSE SLES/OpenSuSE)] (all systems designed around any 2.6.x
core).

When installing and running IMiS®/ARChive Server the operating system must provide the
following tools and libraries: The tools and libraries of the Linux operating system can form an

integral part of different operating system installation packages.

IMiS®/ARChive Server Manual

Version 9.9.1810

4.2.2 List of required system tools

bash
chmod
chown
cp
echo
grep
mv

ps
pwd
rm
rmdir
rpm
sed
sh

su
touch
ip
Idconfig
awk
find

id
ipcrm
ipcs
killall
setsid
groupadd

useradd

(for more information see http://www.linuxmanpages.com/mani/bash.1.php)

(for more information see http://www.linuxmanpages.com/man1/chmod.1.php)

(for more information see http://www.linuxmanpages.com/mani/chown.1.php)

(for more information see http://www.linuxmanpages.com/mani/cp.1.php)

(for more information see http://www.linuxmanpages.com/manl/echo.1l.php)

(for more information see http://www.linuxmanpages.com/manl/grep.1.php)

(for more information see http://www.linuxmanpages.com/man1/mv.1.php)

(for more information see http://www.linuxmanpages.com/man1/ps.1.php)

(for more information see http://www.linuxmanpages.com/mani/pwd.1.php)

(for more information see http://www.linuxmanpages.com/man1/rm.1.php)

(for more information see http://www.linuxmanpages.com/manl/rmdir.1.php)

(for more information see http://www.linuxmanpages.com/man8/rpm.8.php)

(for more information see http://www.linuxmanpages.com/mani/sed.1.php)

(for more information see http://www.linuxmanpages.com/manl/sh.1.php)

(for more information see http://www.linuxmanpages.com/manl/su.1.php)

(for more information see http://www.linuxmanpages.com/manl/touch.1l.php)

(for more information see http://www.linuxmanpages.com/man?/ip.7.php)

(for more information see http://www.linuxmanpages.com/manl/ps.1.php)

(for more information see http://www.linuxmanpages.com/man1/awk.1.php)

(for more information see http://www.linuxmanpages.com/mani/find.1.php)

(for more information see http://www.linuxmanpages.com/man1/id.1.php)

(for more information see http://www.linuxmanpages.com/man8/ipcrm.8.php)

(for more information see http://www.linuxmanpages.com/man8/ipcs.8.php)

(for more information see http://www.linuxmanpages.com/mani/killall.1.php)

(for more information see http://www.linuxmanpages.com/man2/setsid.2.php)

(for more information see http://www.linuxmanpages.com/man8/groupadd.8.php)

(for more information see http://www.linuxmanpages.com/man8/useradd.8.php)

4.2.3 List of required system libraries

libc.so.6

libm.so.6

libpthread.so.0
libstdc++.s0.6

libdl.so.2

libgce_s.so.1

librt.so.1

libbz2.s0.1

libz.so.1
rpmlib

2018 © Imaging Systems, Inc., All rights reserved.

246

http://www.linuxmanpages.com/man1/bash.1.php
http://www.linuxmanpages.com/man1/chmod.1.php
http://www.linuxmanpages.com/man1/chown.1.php
http://www.linuxmanpages.com/man1/cp.1.php
http://www.linuxmanpages.com/man1/echo.1.php
http://www.linuxmanpages.com/man1/grep.1.php
http://www.linuxmanpages.com/man1/mv.1.php
http://www.linuxmanpages.com/man1/ps.1.php
http://www.linuxmanpages.com/man1/pwd.1.php
http://www.linuxmanpages.com/man1/rm.1.php
http://www.linuxmanpages.com/man1/rmdir.1.php
http://www.linuxmanpages.com/man8/rpm.8.php
http://www.linuxmanpages.com/man1/sed.1.php
http://www.linuxmanpages.com/man1/sh.1.php
http://www.linuxmanpages.com/man1/su.1.php
http://www.linuxmanpages.com/man1/touch.1.php
http://www.linuxmanpages.com/man7/ip.7.php
http://www.linuxmanpages.com/man1/ps.1.php
http://www.linuxmanpages.com/man1/awk.1.php
http://www.linuxmanpages.com/man1/find.1.php
http://www.linuxmanpages.com/man1/id.1.php
http://www.linuxmanpages.com/man8/ipcrm.8.php
http://www.linuxmanpages.com/man8/ipcs.8.php
http://www.linuxmanpages.com/man1/killall.1.php
http://www.linuxmanpages.com/man2/setsid.2.php
http://www.linuxmanpages.com/man8/groupadd.8.php
http://www.linuxmanpages.com/man8/useradd.8.php

4.2.4 Minimum requirements
Operating system: Linux OS (RedHat EL/Fedora, SuSE SLES/OpenSuSE) (all systems designed

around any 2.6.x core).

5 INSTALLATION

The process for installation using console toals is described below. IMiS®/ARChive Server

installation can be performed by the root user (root) or any user with equivalent rights (sudo).

It follows steps and is uniform for all target groups of persons installing the server.

5.1 Installation process

Installation can only be performed in an environment that meets the minimum requirements
for installing one of the supported Linux distributions.
The minimum requirements can be upgraded in line with foreseen needs.

For more information see chapter Hardware and Software).

The IMiS®/ARChive Server installation process is simple. The steps of the process are

described below.

Step 1

The user logs into the operating system console as a root user or enters commands as
equivalent to the root user using the sudo tool. The disk drives foreseen for IMiS®/ARChive
Server should be prepared and accessible in the file system in advance. /iarc is the default
location for most server files (database, document files, etc.). Installation is performed using

the rpm tool.

This tool is an integral part of supported Linux distributions.

Step 2
An rpm command is executed to install the installation package:
[user1@iarc ~1# sudo rpm -ivh imisarc.9.1.1406-600.0001.e14.i386.rpm

The package can also have a different name. This depends on the Linux distribution and version

of IMiS®/ARChive Server being used.

Step 3

If installation is successful, the following message will appear (its content may differ depending

on the Linux distribution being used):

Preparing HHHHHHHHHH R 1100%]
Tiimisarc USRS R 1100%]
Performing POSTINSTALLATION Actions

POSTINSTALLATION Actions Done

Step 4

The installation process creates the following directories and files:

/iarc/db and /iarc/db/iarc Directories containing server database files.

/iarc/fti Directory containing the system database for searching by full
document text.

Jiarc/vol Directory containing the volumes where IMiS®/ARChive Server saves

document files.

/iarc/wcache Directory the server uses for caching document files during creation
or editing.
/iarc/rcache Directory for caching document files for which users have submitted a

view request.
The /iarc/work Directory where the server saves files of a temporary nature in

individual processes.

/opt/IS/imisarc Contains execution files and libraries required by the server for its
operations.

/etc/iarc.conf Server configuration file.

/etc/init.d/iarcd Server initialization script.

5.2 Post-installation processes

IMiS®/ARChive Server post-installation processes can be performed by the root user or a user

with equivalent rights (administrator, trained staff, etc.)

5.2.1 Settings for the number of simultaneously opened files

Every process in the Linux operating system requires certain rights to function properly.
This is achieved by running the process with the privileges of a user account that has been
assigned adequate rights. Besides installing files, the installation process also creates a user

account with the name iarc.

Following installation, the maximum allowable number of simultaneously open files per
IMiS®/ARChive Server user account must be set. The recommended value is 4096

simultaneously opened files.

This setting is entered in the /etc/security/limits.conf file by filling in the following two lines:

iarc soft nofile 4096
iarc hard nofile 4096

Rights can also be set for all users belonging to the iarc group.
This is not explicitly required:

@iarc soft nofile 4096
@iarc hard nofile 4096

The same effect can be achieved by creating a /etc/security/limits.d/iarc.conf file and entering the
two lines listed above for a group or user.
The decision to use one of these approaches should be based on:
e The internal rules of system administration of the server where IMiS®/ARChive Server
is being installed.

e The personal preferences of the head system administrator - custodian.

The pam_limits PAM architecture module (Pluggable Authentication Modules for Linux,

http://en.wikipedia.org/wiki/Linux PAM) obeys all set commands

from the /etc/security/limits.d/ directory and the /etc/security/limits.conf configuration file.

5.2.2 Settings for automatic start up
Once installed, IMiS®/ARChive Server is set to start up automatically. Automatic server starts
up upon operating system start up can also be manually set:
e For RHEL and CentQS distributions, the following command is used:
chkconfig iarcd on
e For SLES and OpenSuSE distributions, the following command is used:
chkconfig iarcd on Or yast

(yast: the standard configuration tool in SLES and OpenSuSE distributions).

http://en.wikipedia.org/wiki/Linux_PAM

Automatic start up settings for server services can also be checked:

e For RHEL and CentQS distributions, the following command is used:
chkconfig iarcd on
(returns the levels on which a service is automatically started).

e For SLES and OpenSuSE distributions, the following command is used:

chkconfig iarcd —list Or yast

It is important that the service starts on levels 3 and 5, as the following message shows:

[user1@iarc ~1# sudo chkconfig iarcd —list

iarcd O:off Toff 2:on 3:on 4:on 5:.0n B:off

5.3 Testing installation and settings

Several steps can be used to check whether installation was successful:

Step 1

In the /etc/iarc.conf configuration file, in the [Logl section, set the LoglLevel parameter to 7 and
start the IMiS®/ARChive Server storage server service.

A message will appear;

[user1@iarc ~1# sudo service iarcd start

Starting IMiS/ARChive HSM Storage Server: [OK 1

Step 2

Use the pstree -G command to check the status of running processes and their threads.
A list is returned, part of which is shown below (the report may be different depending on the

distribution):
[useri@iarc ~1# sudo pstree —G

init—— ...

7*[{iarcd}]

I—iarcd—[—iarcd
L—iavol——{iavol}

This message appears if, in the iarc.conf, the [Server] section of the ConnChilds parameter in has a
value of 1 and ReqThreads has a value of 7. The message displays the main process (iarcd) that
manages the connection process (another iarcd) with 7 threads and a iavol process with one

thread that manages IMiS®/ARChive Server volumes.

Step 3

The netstat —tan command is used to check whether IMiS®/ARChive Server’'s administration

and connection process at the TCP ports defined in the iarc.conf are listening for requests.

If the default TCP ports are set, the message will contain the following:

[useri@iarc ~1# netstat -tan

Proto Recv-Q Send-Q Local Address Foreign Address State

tep 0 0 *=18807 o LISTEN
tcp 0 0 *16808 LISTEN

6 UPGRADING

IMiS®/ARChive Server upgrading can be performed by the root user or a user with equivalent
rights (administrator, trained staff, etc.)
When upgrading, some of the following processes must be performed (all these processes can
be performed in the event of a larger server version upgrade, for example to a higher main
build):

Checking the consistency of the internal server database.

Exporting internal server database data.

Upgrading execution programs.

Upgrading libraries (optional).

Expanding the server database data scheme.

Importing server database data once the scheme has been expanded.

Managing rights and ownership in server files.

6.1 The upgrade process

Step 1
Before upgrading, the IMiS®/ARChive Server database must be exported and a backup must

be made using the procedure described in another chapter of this documentation.

Step 2

Upgrading can be rather time consuming, depending on the number of objects

stored on IMiS®/ARChive Server. Upgrading is performed with the following command:

[user1@iarc ~1# sudo rpm -Uvh imisarc.9.8.1710-600.0001.el4.i386.rpm

If correctly executed, the upgrading process will return a message similar to the one shown

below (differences may occur as a result of different Linux distributions):

Starting IMiS/ARChive HSM Storage Server: [OK 1

Verifying IMiS/ARChive HSM Storage Server Database (BDB edition) integrity (this may take a while depending
on your object store size)...

Database is consistent!

Exporting IMiS/ARChive HSM Storage Server Database (this may take a while depending on your object store
sizel...

Database Export succefull! Upgrade can proceed.

Performing POSTINSTALLATION Actions

Importing exported database files (this may take a while depending on your object store size).

Done.

Step 3

Following upgrading, it is a good idea to check whether the current state of IMiS®/ARChive
Server’s internal database has been successfully transferred by exporting the database and
verifying the consistency of the entries in the database text files and checking file and volume

directory ownership and the content of the /etc/iarc.conf file.

6.2 Possible complications during upgrading

Common complication 1

When attempting to upgrade, the program returns an error:

error: can't create transaction lock on /var/lib/rpm/.rpm.lock (Permission denied)

Reason for complication 1

The user performing the upgrade does not have adequate rights.

Solution for complication 1

To upgrade, a user must log in as the root user or must use a tool that provides them with

rights equivalent to those of the root user (sudo).

Common complication 2

When attempting to upgrade, the program returns a warning:

Changing ownership of volume mountpoint "/iarc/vol/vol00" recursively to iarc:iarc (this may take a while).
WARNING: Operation failed. You will need to grant access to directories and objects for user iarc group iarc

manually.

Reason for complication 2

When managing rights, the volume located at /iarc/vol/vol00 could not be found or some other

reason prevented the root user from changing file and directory volume ownership.

Solution for complication 2

The disk drives containing the missing volumes (in this case, they include /iarc/vol/vol00) must
be connected and ownership of the directories and files must be manually set using the

following command:
[user1@iarc ~1# sudo chown <iarc uporabnik>:<iarc skupina><pot> -R
In this example:

[user1@iarc ~1# sudo chown iarc:iarc /iarc/vol/vol0O0 -R

Common complication 3

When attempting to upgrade, the program returns an error:
ERROR: IMiS/ARChive Storage Server BDB Database consistency check reported an error in one of the
database entities. Manually run '/opt/IS/imisarc/dbtool -a check' from directory /iarc/db to get extended error
information. IMiS/ARChive upgrade can proceed only when database is consistent. You need to manually verify

and remove any inconsistency of the database. UPGRADE ABORTED!

Reason for complication 3

IMiS®/ARChive Server’s internal database cannot be accessed or is corrupted.

Solution for complication 3

Check whether the directory where the server database is located exists. Also check that the
directory is not empty and that rights for it have been set for the user performing the server

processes.

Then run the following command:

[user1@iarc ~1# sudo su —iarc —s /hin/bash —c "cd /opt/IS/imisarc 8& ./dbtool —f <path to server configuration

file> —h <path to internal database> -w <path to internal database> -a check
In this example:

[user1@iarc ~1# sudo su —iarc —s /bin/bash —c "cd /opt/IS/imisarc &8 ./dbtool —f /etc/iarc.conf —h /iarc/db -w

/iarc/db -a check

The command will return a variety of data on the database malfunction. If the error falls outside
the knowledge of the administrator of the product, other channels may be used as specified in
the maintenance agreement or other agreements. In this case, the manufacturer will advise

the user on resolving the error or provide the use of its maintenance staff.

7 REMOVAL

The process for removing (uninstalling) IMiS®/ARChive Server can be performed by the root

user or by a user with equivalent rights (administrator, trained staff, etc.)

7.1 The Removal process

Step 1

Check the installed version of IMiS®/ARChive Server in the rpm database (message may differ
depending on the distribution used):

[user1@iarc ~1# sudo rpm —q imisarc
imisarc-9.1.1406-600.i386

[user@iarc ~1#

Step 2

Stop the IMiS®/ARChive Server server service.
This action is also implicitly performed upon removal if the program detects that the service is

running.

Step 3
Use the rpm command to uninstall the IMiS®/ARChive Server installation package.
The full name from the rpm database must be entered, as shown in step 1:

[user1@iarc ~1# sudo rpm —e imisarc-9.8.1710-600.i386

This uninstall action WILL NOT:
* remove IMiS/ARChive configuration file (e.g.: /etc/iarc.conf)
* remove IMiS/ARChive database files
* remove IMiS/ARChive log files (location set in /etc/iarc.conf)
* remove IMiS/ARChive pid file (location in /var/run/iarc or overriden in /etc/iarc.conf)
* remove IMiS/ARChive stored objects (on all your volume mountpoints)

* remove IMiS/ARChive process user (iarc) and group (iarc) accounts from /etc/passwd and /etc/group
Above actions should be performed manually if required!
Uninstall complete.

[user1@iarc ~1#

8 ADMINISTERING THE PRODUCT

IMiS®/ARChive Server administration can be performed by the root user or a user with

equivalent rights (administrator, trained staff, etc.).

Due to the ease of use, following settings can be managed by the IMiS®/Client:

e User and user group access rights to entities and user defined attributes.

e User defined attributes.

e Attributes value range.

e Entity tree structure in the classification scheme and the method of setting the
classification code for entities at certain tree level.

e Users and user groups with information about user, authentication, roles and group
members.

e Templates with user defined attributes.

e Profiles.

e \olumes.

Detailed information is available in chapter Server Configuration in the IMiS®/Client Manual.

8.1 Starting and shutting down

An initialization script is used to start and shut down IMiS®/ARChive Server. The iarcd script is
located in the /etc/re.d/init.d directory for the RHEL and CentOS distributions and in the
/ete/init.d directory for the SLES and OpenSuSE distributions.

The initialization script is used together with the service tool in the following way:

[user1@iarc ~1# sudo service iarcd <command>

The valid values for the <command> option in the initialization script are:

start This command starts up IMiS®/ARChive Server.
If start up is successful, the script returns the following message:
Starting IMiS/ARChive HSM Storage Server: [OK 1
If start up is not successful, the script returns the following message:

Starting IMiS/ARChive HSM Storage Server: [FAILED]

stop

restart

status

This command shuts down IMiS®/ARChive Server operations.

If shut down is successful, the script returns the following message:
Shutting down IMiS/ARChive HSM Storage Server: [OK 1]
If shut down is not successful, the script returns the following message:

Shutting down IMiS/ARChive HSM Storage Server: [FAILEDI

This command restarts IMiS®/ARChive Server. This is actually a command sequence
with the start and stop commands, which is why the messages on the console are

identical to those that would appear if both commands were executed.

This command shows the status of IMiS®/ARChive Server. If the program is running,
it also returns two process identification numbers:

Status of IMiS/ARChive HSM Storage Server: iarcd (pid 6222 6216) is running ...

If the service has stopped running, it returns the following:

Status of IMiS/ARChive HSM Storage Server: iarcd is stopped

For more information about potential problems starting IMiS®/ARChive Server se chapter

Troubleshooting.

8.2 Logging operational events

Event logging is intended primarily to check the functioning of the server. It is conducted

occasionally or as needed by the server administrator or the IMiS®/ARChive Server

administrator. IMiS®/ARChive Server logs events based on the logging level settings in the

/etc/iarc.conf configuration file. The default location of the logs is /var/log/iarc. The active log

where IMiS®/ARChive Server logs current events is located at /var/log/iarc/iarc.log. Older events

are saved in archive log files, which are created as needed in accordance with the settings.

Archive log files are created using the /var/log/iarc/iarc.XX.log addressing scheme (XX = sequence

of the archive file, a larger number indicates events that date further back in time). Logging in

IMiS®/ARChive Server is performed using the FILO principle (FILO — first in/last out).

The number and size of the archive logs can be set in the /etc/iarc.conf configuration file,

in the [Logl section. The time intervals at which information is removed from the log are

adjusted using the setting for the number and size of logs based on the amount of entries.

Best practices dictate saving level 6 information for at least three months.

There are 7 logging levels. Every level represents a greater degree of detail of information being

logged by IMiS®/ARChive Server.

Level O — Emergency

Entries of the “zero” level are errors that prevent the continued operations of IMiS®/ARChive
Server. They represent serious errors, possibly in connection with data corruption.

The server therefore shuts down once it detects an error of this kind; continued use is not
possible without intervention from the server administrator.

The causes of these errors are usually of an external nature, such as the failure of key server

hardware components.

Level 1— Alert
Records of the first level contain events that do not necessarily result in IMiS®/ARChive
Server ceasing operations. It will cease operations if continued use could lead to a malfunction

in the internal server database or the objects.

There are several possible reasons for errors on this level: hardware failure, incorrect
performance of operating system functions has been detected, the server is overloaded or
another program is interfering with the IMiS®/ARChive Server environment, an attempt to

configure profiles and volumes has failed, etc.

Level 2 — Critical

Records of level 2 events contain errors that cause IMiS®/ARChive Server to cease
operations, as continued use could lead to a malfunction in the internal server database or the
objects. There are several possible reasons for errors on this level: incorrect performance of
operating system functions has been detected, insufficient server resources, the server is

overloaded or an error has been detected in server operations, etc.

Level 3 — Error

Records of level 3 events contain errors where IMiS®/ARChive Server detected an operational
error that is not critical and does not imply the possibility of data corruption.

The causes of these errors can pertain to the client or result from incorrect or unsuitable

server setting parameters or incorrect entries in the database.

Level 4 — Warning

Records of level 4 events are warnings where IMiS®/ARChive Server detected an impropriety
that does not essentially impact server operations and that in most cases results from
unregulated client requests, and less frequently from incorrect entries in the server database

or configuration file.

Level 5 — Notice

Level 5 records are records about important regular (normal) events in IMiS®/ARChive Server

that could potentially be of interest to administrators.
Level 6 — Info
Level 6 records are records about less important regular (normal) events in IMiS®/ARChive

Server that could potentially be of interest to administrators.

Level 7 — Debug

Level 7 entries are extended entries about all events in IMiS®/ARChive Server. These entries
are used when collecting highly detailed information about server operations in the event that

the causes of an error or warning are not immediately evident.

The IMiS®/ARChive Server must pay attention to messages from levels 4 to O, as they could

reveal problems in server operations and communications with clients.

8.3 Configuration

Configuration is performed by the root user or by a user with rights equivalent to those of the
root user using the sudo tool to perform actions with IMiS®/ARChive Server user credentials.

Otherwise an internal database malfunction could occur.

8.3.1 Foreseen tasks

Console tools for work with the IMiS®/ARChive Server internal database include the following:

dbtool This tool enables the server administrator to manage the internal database.
The database exporting process can only be executed on a running server.
The database importing process can only be executed when the server is not

running.

Syntax:
usage: dbtool [-f db_config_filel [-g(uiet)] [-w working_dirl [-v version] [-o overridell-a | -t

tablesl:namel,..1 exp | imp | init | del

Tables:

acle - acl entry table

aclv - acl entry validity table

at - attribute table

ag - attribute group table

av - attribute value table

ab - attribute binary table

dt - attribute date-time table

db - attribute double table

fi - attribute file table

i4 - attribute int32 table

i8 - attribute int64 table

i16 - attribute int128 table

i16i - attribute int128 index table

sm - attribute max string table

s10 - attribute value string 10

s20 - attribute value string 20

s30 - attribute value string 30

s40 - attribute value string 40

s50 - attribute value string 50

s100 - attribute value string 100
s200 - attribute value string 200
s20i - attribute value string 20 index
s30i - attribute value string 30 index
s40i - attribute value string 40 index
sb0i - attribute value string 50 index
s100i - attribute value string 100 index
s200i - attribute value string 200 index
ué - attribute value uint32

u8 - attribute value uint64

u1B - attribute value uint128

u1Bi - attribute value uint128 index
au - audit

CX - compression

mi - content type

cnt - counter table

dsc - digital certificate

chdy - certificate body

ajts - aip job timestamp

dsi - digital signature

de - directory entry

dea - directory entry alias

dg - directory entry group

ent — entity

cl - entity class

do - entity document

fl - entity folder

lo - lookup table

h128 - 128 bit hash table

h160 - 160 bit hash table

h224 - 224 bit hash table

h256 - 256 bit hash table

h384 - 384 bit hash table

h512 - 512 bit hash table

rets - revocation data/timestamp bind table
resig - revocation data/digital signature bind table
tsaip - timestamp/aip bind table

cxl - compression library

pr - profile

prop - property

sd - storage driver

tm - template

ta - template attribute

tb - template bind

aip - archival information package

aipg - archival information package queue
caqg - create aip queue

revo - revocation data

fti - full text indexing queue record

ts - timestamp

tsr - timestamp rule

vo — volume

fd - file description

null - attribute value null value

revg - review queue

GetStoragelnfo This is a tool for configuring profiles and volumes and data about storage

capacity.

Syntax:

usage: GetStoragelnfo [path-to-iarc.conf]
(together with the file path if the file is not located in the default location —
/etc 1)

8.3.2 Configuration processes with console tools
The internal server database can be exported using the following command (the specifics

depends on the configuration of the server):

[useri@iarc ~1# sudo su - iarc -s /bin/bash -c "cd /opt/IS/imisarc &8 ./dbtool -f /etc/iarc.conf -w /iarc/db/
-aexp"

Using 'sl_SL.UTF-8' locale settings.
Document Root: /iarc/db/
Port: 21553

Exporting ACLENTRY (33 records) to aclentry.txt ... OK.

Exporting ACLENTRYVALIDITY (2 records) to aclentryvalidity.txt ... OK.

Exporting ATTRIBUTE (84 records) to attribute.txt ... OK.

Exporting ATTRIBUTEGROUP (O records) to attributegroup.txt ... OK.

Exporting ATTRIBUTEVALUE (4569935 records) to attributevalue.txt ... OK.

Exporting ATTRIBUTEVALUEBINARY (1 records) to attributevaluebinary.txt ... OK.
Exporting ATTRIBUTEVALUEDATETIME (1232675 records) to attributevaluedt.txt ... OK.
Exporting ATTRIBUTEVALUEDOUBLE (O records) to attributevaluedouble.txt ... OK.
Exporting ATTRIBUTEVALUEFILE (1310789 records) to attributevaluefile.txt ... OK.
Exporting ATTRIBUTEVALUEINT32 (820991 records) to attributevalueint32.txt ... OK.
Exporting ATTRIBUTEVALUEINTB4 (821009 records) to attributevalueint64.txt ... OK.
Exporting ATTRIBUTEVALUEINT128 (1 records) to attributevalueint128.txt ... OK.
Exporting ATTRIBUTEVALUEINT128IDX (1 records) to attributevalueint128idx.txt ... OK.
Exporting ATTRIBUTEVALUESTRING (242028 records) to attributevaluemaxstring.txt ... OK.
Exporting ATTRIBUTEVALUESTRING10 (O records) to attvalstr10.txt ... OK.

Exporting ATTRIBUTEVALUESTRINGZ20 (1 records) to attvalstr20.txt ... OK.

Exporting ATTRIBUTEVALUESTRINGS30 (1 records) to attvalstr30.txt ... OK.

Exporting ATTRIBUTEVALUESTRING40 (1 records) to attvalstr40.txt ... OK.

Exporting ATTRIBUTEVALUESTRING50 (619562 records) to attvalstr50.txt ... OK.
Exporting ATTRIBUTEVALUESTRING100 (39 records) to attvalstr100.txt ... OK.
Exporting ATTRIBUTEVALUESTRING200 (649035 records) to attvalstr200.txt ... OK.
Exporting ATTRIBUTEVALUESTRING20IDX (1 records) to attvalstr20idx.txt ... OK.
Exporting ATTRIBUTEVALUESTRING30IDX (8 records) to attvalstr30idx.txt ... OK.
Exporting ATTRIBUTEVALUESTRING40IDX (1 records) to attvalstr40idx.txt ... OK.
Exporting ATTRIBUTEVALUESTRING50IDX (1 records) to attvalstr50idx.txt ... OK.
Exporting ATTRIBUTEVALUESTRING100IDX (68 records) to attvalstr100idx.txt ... OK.
Exporting ATTRIBUTEVALUESTRING200IDX (31426 records) to attvalstr200idx.txt ... OK.
Exporting ATTRIBUTEVALUEUINT32 (2565834 records) to attvaluint32.txt ... OK.
Exporting ATTRIBUTEVALUEUINTB4 (30944 records) to attvaluintB4.txt ... OK.
Exporting ATTRIBUTEVALUEUINT128 (1 records) to attvaluint128.txt ... OK.

Exporting ATTRIBUTEVALUEUINT128IDX (1 records] to attvaluint128idx.txt ... OK.
Exporting audit log data (9544057 records) to auditlog.bin ... OK.

Exporting DIGITALCERTIFICATE (40 records) to digitalcert.txt ... OK.

Exporting COUNTER (4756 records) to counter.txt ... OK.

Exporting DIGITALSIGNATURE (476 records) to digitalsig.txt ... OK.

Exporting DIRECTORYENTRY (89 records]) to direntry.txt ... OK.

Exporting DIRECTORYENTRYALIAS (42 records) to direntryalias.txt ... OK.
Exporting DIRECTORYENTRYGROUP (80 records) to direntrygroup.txt ... OK.
Exporting ENTITY (1245268 records) to entity.txt ... OK.

Exporting ENTITYCLASS (127 records) to entityclass.txt ... OK.

Exporting ENTITYDOCUMENT (1237320 records) to entitydocument.txt ... OK.
Exporting ENTITYFOLDER (7787 records) to entityfolder.txt ... OK.

Exporting PROFILE (4 records) to profile.txt ... OK.

Exporting PROPERTY (15 records) to property.txt ... OK.

Exporting TEMPLATE (33 records) to template.txt ... OK.

Exporting TEMPLATEATTRIBUTE (142 records) to templateatt.txt ... OK.
Exporting TEMPLATEBIND (22 records) to templatebind.txt ... OK.

Exporting ARCHIVALINFORMATIONPACKAGE (589815 records) to aip.txt ... OK.
Exporting ARCHIVALINFORMATIONPACKAGEQUEUE (O records) to aipg.txt ... OK.
Exporting CREATEAIPQUEUE (O records) to createaipqueue.txt ... OK.

Exporting AIPJOBTIMESTAMP (O records) to aipjobts.txt ... OK.

Exporting REVOCATIONDATA (1034 records) to revodata.txt ... OK.

Exporting CONTENTPROCESSINGQUEUE (O records) to cpqueue.txt ... OK.
Exporting CONTENTPROCESSINGERROR (1 records) to cperror.txt ... OK.
Exporting TIMESTAMP (476 records) to timestamp.txt ... OK.

Exporting VOLUME (12 records) to volume.txt ... OK.

Exporting LOOKUPTABLE (12 records) to lookup.txt ... OK.

Exporting HASH128 (1 records) to hash128.txt ... OK.

Exporting HASH1860 (524494 records) to hash160.txt ... OK.

Exporting HASH224 (1 records) to hash224.txt ... OK.

Exporting HASH256 (65322 records) to hash256.txt ... OK.

Exporting HASH384 (1 records) to hash384.txt ... OK.

Exporting HASH512 (1 records) to hash512.txt ... OK.

Exporting REVOCATIONDATATIMESTAMP (857 records) to revodatats.txt ... OK.
Exporting REVOCATIONDATADIGITALSIGNATURE (O records) to revodatadsig.txt ... OK.
Exporting ENTITYRETENTIONDISPOSITIONSCHEDULE (86 records) to rds.txt ... OK.
Exporting TIMESTAMPARCHIVALINFORMATIONPACKAGE (589814 records) to tsaip.txt ... OK.
Exporting CERTIFICATEBODY (14302 records) to certbody.txt ... OK.

Exporting FILEDESCRIPTION (348 records) to filedesc.txt ... OK.

Exporting ATTRIBUTEVALUENULL (124334 records) to attvalnull.txt ... OK.
Exporting REVIEWQUEUE (O records) to reviewqueue.txt ... OK.

Exporting CONTENTBIND (31 records) to contentbind.txt ... OK.

Export command completed with no erraors.

Note: The numbers (XX records] listed in each line can change depending on the number of records.

The result is 70 text files that represent individual tables in the database, a binary file that
represents the audit trail and additional data saved in files without extensions. The files start
with a letter followed by a sequence number — for example: »p0« for blob from the PROPERTY
table, that contain a part of the internal IMiS®/ARChive Server base.

8.4 Administration

Administrative tasks can fundamentally affect product performance.

Correct system installation and configuration can ensure stable and expected product
performance with little or no maintenance; an incorrect or faulty configuration, on the other
hand, can compromise the system and make it unstable, slow or vulnerable to security threats.
That is why interventions in administration of the product must be restricted to trained
administrators with a detailed knowledge of the manufacturer’s instructions and general best
practices in planning and maintaining IT systems. We recommend entering an agreement with
the manufacturer upon purchase of the product to ensure flawless, uninterrupted operation of
the archive system, which, for many users, constitutes a “mission critical” system.

The administrator sets parameters for IMiS®/ARChive Server in the configuration file based on
server resource usage, which they then monitor through periodic overviews of server status,

log entries and requirements of the application environment.

The administrator manages the system’s configuration parameters in line with the
manufacturer’s instructions. These parameters affect the classification scheme, entity
templates, attribute metadata schemes, plug-in settings for different support services for the
system, etc. These operations are performed using the administration interface within the

IMiS@®/Client, described in the product manual.

We also offer product training for user-administrators and recommend customers consider a
maintenance agreement, as we provide professional product management services. These

services can ensure the uninterrupted operation of the server over an extended period of time.

Before any changes are made, it is a good idea to make a backup of the internal server
database and configuration files, as it could be necessary to restore the old settings due to

changes incorrectly made to the settings and/or the database.

8.4.1 The iarc.conf configuration file
Configuration parameters for IMiS®/ARChive Server can be set in the /etc/iarc.conf file.
In the descriptions below, the default values are used. Parameters are listed by sections

according to their purpose, and are then discussed in detail.

They are divided according to the following principle:

Key:

Description (an optional range of valid, minimum, maximum and

recommended values).

Section [Serverl

Path:

ConnChilds:

ReqgThreads:

StatisticsCycle:

ClientTimeout:

NoAuthClientTimeout:

IdentPassword:

Designates the absolute path to the server execution files (programs)
and libraries. The default value is /opt/IS/imisarc.

Designates the number of simultaneous connection processes on the
server. The default and recommended value is 1. This value can be
increased if the number of requested simultaneous client sessions
exceeds 1024 for every 1024 new sessions. This value has no upper
ceiling, but values over 10 are not advised from a performance
standpoint and can cause problems.

Designates the number of threads executing requests. The default
value is 7 and there is no maximum value. The recommended value is
the square of the number of threads that the server’s processor is
capable of executing at once and depends on the number of
processor cores.

Designates the number of seconds between the calculation of
statistics that IMiS®/ARChive Server keeps on its operations.

The default and recommended value is 180000. Setting a lower value
can affect server responsiveness. The lowest value is 1, and the
highest is 167772186.

Designates the amount of time, in seconds, a logged in client must be
inactive before the server terminates the session. The default value
is 3600 seconds. The smallest value is 1800 and the largest is
86400.

Designates the amount of time, in seconds, a non-logged-in
(anonymous) client must be inactive before the server terminates the
session. The default value is 120 seconds. The smallest possible value
is 5 and the largest is 3600. Only the most basic, least sensitive
information can be exchanged with the server during an anonymous
session (archive name, description, etc.).

Designates an encrypted compressed value of the password used by
the server in encryption processes. If internal identifiers for entities in
other systems are permanently stored, this value cannot be changed
after the first entity has been archived, as this value affects the

encryption algorithm for generating internal entity identifiers.

Port:

Listen:

CXLib:

PartialTimeout:

PidPath:

CountryLanguage:

Designates the number of TCP ports at which the server’s
connection process is listening for requests from clients.

The default value is 16807.

Designates the network address to which the server connects the
TCP ports where it is listening for requests from clients.

Values must conform to the IPv4 or IPvE addressing scheme.

Examples of valid values:

192.168.92.32

fd00:192:168:92::32

192.168.92.32:16807

[fd00:192:168:92::32116807

[fd00:192:168:92:2340:efa1:1244:321]

fd00:192:168:92:2340:efa1:1244:32

[fd00:192:168:92:2340:efa1:1244:32112345

[:fff:192.168.92.12]

+ffff:192.168.92.12

[:ffff192.168.92.121:65743

localhost

[:]

Designates the relative path to libraries containing compression
methods for different client platforms within the path designated by
the value of the DataPath parameter described below.

Designates the amount of time, in seconds, in which the client must
respond to a request from the server. Once this time has passed, the
server closes the session. The smallest value is 1, and the largest is
80; the recommended value is 5.

Designates the path to the ID file of the main server process.

The default value is /var/runfiarc.

Designates regional settings in POSIX format:
xx_YY[.CHARSETI[@variantl]; the first two letters (xx) represent the
language code in the ISO-639 standard, and the second letters (YY)
represent the country code in the ISO-3166 standard. CHARSET
(optional) defines the code table or the code order (a list can be found
in the /usr/share/i18n/charsets directory), and variant (optional)
represents the national features of the language. A list of possible
settings can be obtained by using the locale -a command. This value
defines a range of rules used by the server to execute all operations
with character strings, which can be “sensitive” to different national
characters (sorting, translating, compiling, etc.) The default value is ™,
which effectively specifies the rules set for the system (see the locale
system command http://www.linuxmanpages.com/man1/locale.1.php).

DataPath:

MaxRequestSize:

JVMHome:

JVMOptions:
Mode:

Securelisten:

SecurePort:

SecureCertKeyFile:

SecureCertFile:

SecureCertChainFile:

SecureProtocol:

Special feature: To ensure the transferability of the data saved in the internal
database, the service internally uses UTF-8 as its internal code table
regardless of the regional settings. It saves other regional settings

(language, country, special language features).

Designates the space on the disk where the server saves permanent
data linked to the archive such as statistical data about transactions,
etc. The default value is /iarc/db.

Designates the largest possible one-off request from a client.

The default value is 3276800 bytes. The smallest possible value is
32768 and the largest is 32768000.

Designates the absolute path to the Java environment. Default value
is /opt/IS/imisarc/jvm.

Designates configuration parameters for the Java environment.
Specifies how the client can communicate with the server.

The values are as follows:

0 — communication takes place in an unprotected channel.

1 - the server enables communication both over an unprotected and
protected channel.

2 — communication takes place in a protected channel only.

Default value is O.

Designates the network address on which the server binds the TCP
port, where it expects client requests (a protected communication
channel). For details, see description under the keyword Listen.
Designates the number of the TCP port on which the server’s
connection process expects client requests (a protected
communication channel).

Designates the absolute path to the digital certificate key that is used
in the process of setting up a protected communication channel.
The default value is /opt/IS/imisarc/cert.key.

Designates the absolute path to the digital certificate that is used in
the process of setting up a protected communication channel.

The default value is /opt/IS/imisarc/cert.crt.

Designates the absolute path to the file that contains a trusted
sequence of digital certificates that are verified in the process of
setting up a protected communication channel.

Designates a cryptographic protocol that is used to protect the

communication channel. The default value is TLSv1.

SecureCiphers:

SecureVerifyClientMode:

SecureHandshakeTimeout:

SecureRevocationCheck:

Designates enabled cryptographic algorithms for encrypting data.
Specifies the method of verifying the client’s digital certificate in the
process of setting up a protected communication channel.

The values are as follows:

0 — the client’s digital certificate is not necessary.

1 — the client’s digital certificate is optional (if the client sends it, the
server verifies it).

2 — the client must send the digital certificate, which is then verified
on the server.

Designates time (in seconds) in which the client and the server must
establish a protected communication channel. The default value is 60
seconds, the minimum value is 5 seconds, and the maximum 3600
seconds.

Specifies the method of verifying the client’s digital certificate in
connection to the revocation lists of the digital certificate issuers.
The values are as follows:

0 — (OFF) the revocation of the client’s digital certificate is not
verified.

1 — (OPTIONAL) the revocation of the client’s digital certificate is
verified. If an error occurs in the process, the server will still allow the
connection.

2 — (REQUIRED-CACHED) the revocation state of the client’s digital
certificate is verified mandatorily. The server can use the previously
obtained information if it is still valid.

3 — (REQUIRED-FRESH) the revocation state of the client’s digital
certificate is verified mandatorily. The server always uses fresh

revocation information.

[Databasel section

ProviderBootstrapFile:

Designates the relative path to the configuration file of the plug-in for
the database service. It is relative and depends on the value of the

[Serverl.Path parameter.

[Cachel section

ReadPath:

Designates the path to the directory that represents the cache
where IMiS®/ARChive Server temporarily stores accessed content to
achieve faster delivery of objects to clients. Rights for the path must
be arranged in such a way that a user executing server processes

can read and write files there.

ReadSize:

EditPath:

EditSize:

Designates the smallest possible cache value. The server dynamically
adjusts this limit as needed; it does not make sense to change this
value.

Designates the path to the directory that represents the cache
where the server temporarily dumps objects delivered by clients.
Rights for the path must be arranged in such a way that a user
executing server processes can read and write files there.
Designates the smallest cache value. The server dynamically adjusts

this limit as needed; it does not make sense to change this value.

[Log]l section

LogFile:

MaxSize:

BackupCount:

LoglLevel:

Designates the basic name (and path) of the log file where
IMiS®/ARChive Server records events. Rights for the path must be
arranged in such a way that a user executing server processes can
write files and create new files if necessary.

Designates the maximum size of one log filg, in bytes. The default and
recommended value is 1000000, the smallest value is 85536 and the
largest is 2147483648.

Designates the number of archive log files in which the server logs
events using the FILO (first in-last out) algorithm. The default value
is 1, the recommended value is 9.

The level of events the server logs in the log files. For more

information see chapter Logging operational events. The smallest

value is 1 and the largest is 7; the recommended value is 6.

[AuditLogl section

AuthCryptoModes:

Designates the selection of available cryptographic methods which
the server allows the user to use to encrypt authentication
messages and later communications with a client attempting to view
the audit trail. The identifier represents a combination of the
algorithm, key length and cryptographic method for processing
packet data.

Valid values:

AuthPreSharedKey:

aes-256-cbc
aes-256-ecb
aes-256-ofb
aes-256-cfb
aes-192-cbc
aes-192-ech
aes-192-ofb
aes-192-cfb
aes-128-chc
aes-128-ecb
aes-128-ofb
aes-128-cfb
The cached server key used for encrypting authentication messages

and later for communications with the client that represents the
person authorized to view the audit trail of logged events linked to

sessions and/or objects.

[Authentication] section

Methods:

Designates the possible methods for establishing a session between an
IMiS® client and IMiS®/ARChive Server. Valid values:

basic

advanced

psk

srpBa

Basic represents the older method for starting a session with the server,

without delivering information about the client.

With the advanced method, a more complex HMAC method is used to start
the session with the server, and foresees the use of required and non-
required metadata about the client.

With the public shared key or psk advanced method, an encrypted
exchange of network authentication packets ensures additional security.
The use of user credentials or the srp6a method enables individual user to
log in by obtaining user data on the basis of successful user

authentication via internal sources (the directory).

CryptoModes: Designates possible encryption methods used by the server for encrypted
communications with the client. The identifier represents a combination of
the algorithm, key length and cryptographic method for processing packet

data. Valid values:

aes-256-cbc
aes-256-ech
aes-256-ofb
aes-256-cfb
aes-192-cbc
aes-192-ecb
aes-192-ofb
aes-192-cfb
aes-128-cbc
aes-128-ecb
aes-128-ofb
aes-128-cfb

PreSharedKey: The cached server key used for encrypting authentication messages
(with the psk log in method) and later for communications with the client
that represents a normal,
non-priviliged IMiS® client.

RequiredParams: The set of required data that must be sent by the client when opening a
session or event. If just one of the requested data is missing,
IMiS®/ARChive Server will not open the session or event.

The valid selection of required data can contain at least one of the
following:

username (name of the user performing the operation)

computername (name of the computer where the operation originated)
message (a reason/message entered by the user when performing the
operation)

This setting is blank by default — none of the possible options.

[Admin] section

Enabled: Designates a value that indicates whether the administration module
is enabled or not. The values are as follows:
0 — the administration module is not enabled.
1 — the administration module is enabled.
Default value is 0.
IdleTimeout: Designates the time in seconds after which the administration

session is interrupted due to inactivity. Default value is 900 seconds.

WebPath:

Port:

Listen:

MaxSessionsPerUser:

MaxRequestSize:

Authenticate:

Secure:

SecureCertKeyFile:

SecureCertKeyPassword:

SecureCertFile:

SecureCertChainFile:

SecureProtocol:

SecureCiphers:

Designates the relative path that represents the web address of the
administration interface. Default value is /admin.

Designates the number of the TCP port on which the server’s
connection process expects client administration requests.
Designates the network address on which the server binds the TCP
port, where it expects client administration requests.

For details, see description in the Server section under keyword Listen.
Designates the maximum number of parallel administration sessions
for an individual user. Default value is 5 administration sessions.

Specifies the maximum possible single client request size.

Default value is 1048576 bytes. Minimum value is 10240.

Maximum value is 10485760.

Designates a value that indicates whether authentication is needed
to access the administration: The values are as follows:

0 — authentication is not necessary.

1 — authentication is necessary.

Default value is 1.

Designates a value that indicates whether the communication
between the client and server is conducted over a protected channel.
The values are:

0 — the communication between the client and server is conducted
over an unprotected channel.

1 — the communication between the client and server is conducted
over a protected channel.

Default value is 0.

Designates the absolute path to the digital certificate key that is used
in the process of setting up a protected communication channel.
Default value is /opt/IS/imisarc/cert.key.

Designates the password to the digital certificate key.

Designates the absolute path to the digital certificate that is used in
the process of setting up a protected communication channel.
Default value is /opt/IS/imisarc/cert.crt.

Designates the absolute path to the file containing a trusted chain of
digital certificates. They are verified in the process of setting up a
protected communication channel.

Designates a cryptographic protocol that is used to protect the
communication channel. Default value is TLSv1.

Designates the enabled cryptographic algorithms for data encryption.

SecureVerifyClientMode: ~ Specifies how the client’s digital certificate is verified in the process of
setting up a protected communication channel.
The values are as follows:
0 — the client’s digital certificate is not necessary.
1 —the client’s digital certificate is optional (if the client sends it, the
server verifies it).
2 — the client must send a digital certificate, which is then verified on
the server.

SecureHandshakeTimeout: Designates time (in seconds) in which the client and server must
establish a protected communication channel. Default value is 60
seconds, min value is 5 seconds, max value is 3600.

SecureRevocationCheck: Specifies the method of verifying the client’s digital certificate in
connection to the revocation lists of the digital certificate issuers.
The values are as follows:
0 — (OFF) the revocation of the client’s digital certificate is not
verified.
1 — (OPTIONAL) the revocation of the client’s digital certificate is
verified. If an error occurs in the process, the server will still allow the
connection.
2 — (REQUIRED-CACHED) the revocation state of the client’s digital
certificate is verified mandatorily. The server can use the previously
obtained information if it is still valid.
3 — (REQUIRED-FRESH) the revocation state of the client’s digital
certificate is verified mandatorily. The server always uses fresh

revocation information.

9 TROUBLESHOOTING

In the event of problems, it is important that administrators and users act appropriately.

Any non-expert interference with IMiS®/ARChive Server could worsen the situation and make
resolving errors more difficult. Users/Administrators must be familiarized with the correct way
to use the product and must act in accordance with the user documentation.

We recommend that in the event that problems occur, they turn to competent experts within
the organization (system administrators). We advise system administrators to

use the documentation to determine where an error has occurred and, if needed, to consult

our specialists for further steps.

9.1 How can problems be avoided?

Regular, periodic check ups of the operations of IMiS®/ARChive Server are crucially important
for the timely detection of any problems or errors in the operations of the program.

These check ups include check ups of the consistency of the disk system (the independent disk
or disk array) and file system. Problems with the disk system can be avoided by selecting
reliable hardware and ensuring that the disks used are locally connected to the server with
adequate redundancy.

NAS disk systems should be avoided, as should the shared use of disks on other servers or

disks accessible through the local server.

The consistency of the internal server database should also be checked periodically.

For more information see chapter Configuration.

The optional maintenance agreement is also of key importance. It ensures minimum response

times in the event of more serious erraors or system outages.

9.2 Frequent problems

Frequent problem 1

When attempting to view an object saved on IMiS®/ARChive Server, IMiS®/Scan or IMiS®/View
clients return “Error 61523".

Other clients (IMiS®/Storage Connectar, for example) return the following error:

IMiS/ARC Client <IASession.Open> Failed to establish connection to the cluster node <10.1.1.10, 16807> (Reason:

Error <TimedOut> occurred while opening network connection.).

The server is accessible on the network, but the service at the port where it is listening cannot

be accessed (checking using the telnet program).

[user1@test ~1# ping iarc.acme.com

PING iarc.acme.com (10.1.1.10) 56(84) bytes of data.

64 bytes from iarc.acme.com (10.1.1.10); icmp_seqg=1 ttl=64 time=0.653 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=2 ttl=64 time=0.190 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=3 ttI=64 time=0.186 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=4 ttl=64 time=0.183 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=5 ttl=64 time=0.164 ms

--- iarc.acme.com ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 0.164/0.450/1.530/0.540 ms

[user1@test ~1# telnet iarc.acme.com 16807

Trying 10.0.0.10...

.. (long pause) ...

telnet: connect to address 10.1.1.10: Connection timed out
[useri@test ~1#

The server is running. This can be checked using a console command on the server where it is

installed:

[user1@iarc ~1# sudo service iarcd status
Status of IMiS/ARChive HSM Storage Server: iarcd (pid 23209 23203) is running...
[userl@iarc ~1#

Cause of problem 1

The firewall between the client and the server on the server or network is preventing IMiS®
clients from communicating with IMiS®/ARChive Server through TCP port 16807 or a different

port (depending on the settings in the /etc/iarc.conf file).

Solution for problem 1

The firewall must be reconfigured to allow communication between IMiS® clients and the

server.

Frequent problem 2

When attempting to save a new object, the server returns the following message:

You cannot create an entity with template »% TEMPLATE_NAME%« under specified parent since it's not included
in the list of allowed templates.

The server is accessible on the network, and the service at the port where it is listening is
responding (checking using the telnet program).

[user1@test ~1# ping iarc.acme.com

PING iarc.acme.com (10.1.1.10) 56(84) bytes of data.

64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=1 ttlI=64 time=0.653 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=2 ttI=64 time=0.190 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=3 ttl=64 time=0.186 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=4 ttl=64 time=0.183 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=5 ttl=64 time=0.164 ms

--- iarc.acme.com ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 0.164/0.450/1.530/0.540 ms

[user1@test ~1# telnet iarc.acme.com 16807
Trying 10.1.1.10...

Connected to iarc.acme.com.

Escape character is '

Connection closed by foreign host.

[useri@test ~1#

The server is running. This can be checked using a console command on the server where it is

installed:

[user1@iarc ~1# sudo service iarcd status
Status of IMiS/ARChive HSM Storage Server: iarcd (pid 23209 23203) is running...
[user1@iarc ~1#

Cause of problem 2

The client is attempting to save an object with an existing template that has not been classified

in the list of allowed templates for the parent entity.

Solution for problem 2

Check the list of allowed templates in the parent entity, the classification code of the parent
entity and the template. If the incorrect template has been used or if the client is attempting to
put the entity in the incorrect place in the classification scheme, the error must first be fixed
on the client. Now try saving the object again. Otherwise the template must be added to the

list of allowed templates.

Frequent problem 3

When attempting to save a new object in IMiS®/ARChive Server from an IMiS®/Scan client,
the system returns the message “Error 14”. When attempting to save the object, other clients

(IMiS®/Storage Connector, for example) receive the following message:

Not enough space on storage profile »%PROFILE_NAME%«. Required %FILE_SIZE% bytes..

The server is accessible on the network, and the service at the ports where it is listening is

responding (checking using the telnet program):

[user1@test ~1# ping iarc.acme.com

PING iarc.acme.com (10.1.1.10) 56(84) bytes of data.

64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=1 ttlI=64 time=0.653 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=2 ttI=64 time=0.190 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=3 ttl=64 time=0.186 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=4 ttI=64 time=0.183 ms
64 bytes from iarc.acme.com (10.1.1.10); icmp_seqg=5 ttI=64 time=0.164 ms

--- iarc.acme.com ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 0.164/0.450/1.530/0.540 ms

[user1i@test ~1# telnet iarc.acme.com 16807
Trying 10.1.1.10...

Connected to iarc.acme.com.

Escape character is '

Connection closed by foreign host.

[useri@test ~1#

The server is running. This can be checked using a console command on the server where it is

installed:

[userli@iarc ~1# sudo service iarcd status
Status of IMiS/ARChive HSM Storage Server: iarcd (pid 23209 23203) is running...
[user1@iarc ~1#

Cause of problem 3

All volumes within the saving profile used when saving the new object are full.

Solution for problem 3

Add an adequate number of new volumes to the server profile that does not have sufficient

space.

Frequent problem 4

When starting IMiS®/ARChive Server the following message appears on the console:

[useri@iarc ~1# sudo service iarcd start

WARNING: Network subsystem not running or (RTINETLINK interface not configured in this kernel. If you're sure
that your network is UP you can ignore this message. Continue loading IMiS/ARChive HSM Storage Server...

Starting IMiS/ARChive HSM Storage Server: [OK 1

[useri@iarc ~1#

The server is not accessible on the network:

[user1@test ~1# ping iarc.acme.com

PING iarc.acme.com (10.1.1.10) 56(84) bytes of data.

... (pause) ...

From 192.168.92.32 icmp_seq=2 Destination Host Unreachable
From 192.168.92.32 icmp_seq=3 Destination Host Unreachable
From 192.168.92.32 icmp_seq=4 Destination Host Unreachable
... [stop test using CTRL-C) ...

~C

--- iarc.acme.com ping statistics ---

7 packets transmitted, O received, +3 errors, 100% packet loss, time 6937ms
[useri@test ~1#

Cause of problem 4

When starting up the server, the network subsystem of the operating system was not

working.

Solution for problem 4

Get the network subsystem running and then try to start the server again. If the message

appears again, the server is probably incompatible with the operating system.

Frequent problem 5

When starting IMiS®/ARChive Server the following message appears on the console:

[useri@iarc ~1# sudo service iarcd start

WARNING: Network subsystem not running or (RTINETLINK interface not configured in this kernel. If you're sure
that your network is UP you can ignore this message. Continue loading IMiS/ARChive HSM Storage Server...

Starting IMiS/ARChive HSM Storage Server: [OK 1

[user1@iarc ~1#

The server is not accessible on the network:

[user1@test ~1# ping iarc.acme.com

PING iarc.acme.com (10.1.1.10) 56(84) bytes of data.

... (pause) ...

From 192.168.92.32 icmp_seq=2 Destination Host Unreachable
From 192.168.92.32 icmp_seq=3 Destination Host Unreachable
From 192.168.92.32 icmp_seq=4 Destination Host Unreachable
... (stop test using CTRL-C) ...

~C

--- iarc.acme.com ping statistics ---
7 packets transmitted, O received, +3 errors, 100% packet loss, time 6937ms
[userl@test ~1#

The following records appear in this order in the log:

<date and time of record> [iarcd:<decimal value>:<decimal value>1 INFOIB] Preforming 1 connection handling
childs.

<date and time of record> [iarcd:<decimal value>:<decimal value>] WARNI[4] Cannot bind socket O to address
[10.1.1.101 on port 168071, error 99: Cannot assign requested address. Socket will be closed.

<date and time of record> [iarcd:<decimal value>:<decimal value>] ERRI3] Server was unable to open any
configured listening socket.

<date and time of record> [iarcd:<decimal value>:<decimal value>] INFOIBI Child 2922 exited with exit code O.
<date and time of record> [iarcd:<decimal value>:<decimal value>1 INFOIB] Fatal error occurred. Server is
shutting down.

Cause of problem 5

When starting the server, the network subsystem of the operating system was not running or

the incorrect network settings were set in the configuration file.

Solution for problem 5

Check the operation of the network subsystem and change the network settings in the

configuration file /etc/iarc.conf accordingly.

Frequent problem B

When starting IMiS®/ARChive Server the following message appears on the console:

[user1@iarc ~1# sudo service iarcd start
Error accessing IMiS/ARChive Database directory (<path-to-database>). Check user iarc access to this
directory (must be rwx)

[user1@iarc ~1#

The server is otherwise available on the network:

[user1@test ~1# ping iarc.acme.com

PING iarc.acme.com (10.1.1.10) 56(84) bytes of data.

64 bytes from iarc.acme.com (10.1.1.10): icmp_seqg=1 ttl=64 time=0.653 ms
64 bytes from iarc.acme.com (10.1.1.10); icmp_seg=2 ttI=64 time=0.190 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seq=3 ttl=64 time=0.186 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=4 ttl=64 time=0.183 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=5 ttl=64 time=0.164 ms

--- iarc.acme.com ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 0.164/0.450/1.530/0.540 ms
[useri@test ~1#

Cause of problem 6

The server execution program cannot access its own internal database due to:

e Incorrect settings in the /etc/iadbprovider.xml configuration file, in the
/IMiSARChive/Configuration/Database/DriverArguments/DatabaselLocation section and/or
incorrectly configured access rights and/or ownership of set directory.

e The internal database cannot be accessed because the disk on which the database is

located is not connected to the correct directory.

Solution for problem 6

Check that the settings for the location of the internal server database are correct
(in /etc/iadbprovider.xml, the section
/IMiSARChive/Configuration/Database/DriverArguments/DatabaseLocation, if this section exists. If this

setting is not in the configuration file, the default setting is /iarc/db.

Check the rights and ownership of the directory and the files inside the directory listed as the
directory that contains the internal database files. The user performing server processes (by
default iarc) must have rights to read, write and create new files in this directory. The group to

which the user belongs (by default iarc) only needs read rights.

If the siarc directory is empty, this is probably because the disk where the internal server
database is located in the directory (default /iarc/db) cannot be accessed; in this case, the disk

must first be accessible.

Frequent problem 7

After a complete reboot of IMiS®/ARChive Server, attempts to view objects stored on the
server in IMiS®/Scan and IMiS®/View return “Error 61523”. Other clients (IMiS®/Storage

Connector, for example) return the following error:

IMiS/ARC Client <IASession.Open> Failed to establish connection to the cluster node <10.1.1.10, 16807> (Reason:
Error <TimedOut> occurred while opening network connection.).

The server is otherwise available on the network:

[user1@test ~1# ping iarc.acme.com

PING iarc.acme.com (10.1.1.10) 56(84) bytes of data.

64 bytes from iarc.acme.com (10.1.1.10); icmp_seqg=1 ttl=64 time=0.653 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=2 ttl=64 time=0.190 ms
64 bytes from iarc.acme.com (10.1.1.10); icmp_seg=3 ttI=64 time=0.186 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=4 ttl=64 time=0.183 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=5 ttl=64 time=0.164 ms

--- iarc.acme.com ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 0.164/0.450/1.530/0.540 ms

[userl@test ~1#

The server is otherwise running, but the status of the server as a service returns the following:

[useri@iarc ~1# sudo service iarcd status
Status of IMiS/ARChive HSM Storage Server: iarcd is stopped
[user1@iarc ~1#

Cause of problem 7

The initialization script is not activated in the sequence for starting server services.

Solution for problem 7

Automatic start up of the server as a service when the operating system starts up must be

changed:
[user1@iarc ~1# sudo chkconfig iarcd on
[user@iarc ~1#
Check if the command was successfully executed:

[user1@iarc ~1# sudo chkconfig iarcd --list
iarcd O:off Toff 2.0on 3:on 4.0on 5:.0n B:0off [useri@iarc ~1#

Then start the server with the following command:

[useri@iarc ~1# sudo service iarcd start
Starting IMiS/ARChive HSM Storage Server: [OK 1

[useri@iarc ~1#

Frequent problem 8

When starting IMiS®/ARChive Server the following message appears on the console:

[useri@iarc ~1# sudo service iarcd start

Starting IMiS/ARChive HSM Storage Server: [OK 1
WARNING: Maximum number of file handles (ulimit -n) allowed for

user iarc or group iarc is 1024. Set allowable maximum to

at least 4096 by adding following two lines to /etc/security/limits.conf;

iarc hard nofile 4096
iarc soft nofile 4096
or

@iarc hard nofile 4096
@iarc soft nofile 4096

If you still recieve this message after modifying /etc/security/limits.conf
check if Pluggable Authentication Modules (PAM) include module
pam_limits.so in session service for user iarc and/or group iarc
(see Linux-PAM system administrators guide on how to manage modules)
IMiS/ARChive will continue to run normally with current setting...

[OK]
[useri@iarc ~1#

After start up the service will run normally. Over time, the server becomes inaccessible to the

sessions of new clients. The following records appear in the log:

<date and time of enty> [iarcd:<decimal value>:<decimal value>1 CRITI2] No child process can accept new

connection.

Cause of problem 8

The server has reached the maximum number of open files and cannot accept new

connections. The operating system recognizes each connection as an “open file”.

Solution for problem 8

Check the system setting for the maximum number of open files for the iarc user for whom the

server is running.

9.3 Less frequent problems

Less frequent problem 1

When attempting to view an object saved on IMiS®/ARChive Server, IMiS®/Scan or IMiS®/View
clients return “Error 11”.
Other clients (IMiS®/Storage Connector, for example) receive the following message when

attempting to retrieve the object from the server:

iavol OpenObject error 0x564e4f56..

The server is accessible on the network, and the service at the port where it is listening is

responding (checked using the telnet program).

[user1@test ~1# ping iarc.acme.com

PING iarc.acme.com (10.1.1.10) 56(84) bytes of data.

64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=1 ttl=64 time=0.653 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=2 ttl=64 time=0.190 ms
64 bytes from iarc.acme.com (10.1.1.10); icmp_seqg=3 ttI=64 time=0.186 ms
64 bytes from iarc.acme.com (10.1.1.10); icmp_seg=4 ttI=64 time=0.183 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=5 ttl=64 time=0.164 ms

--- iarc.acme.com ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 0.164/0.450/1.530/0.540 ms

[user1@test ~1# telnet iarc.acme.com 16807
Trying 10.1.1.10...

Connected to iarc.acme.com.

Escape character is ']

Connection closed by foreign host.

[useri@test ~1#

The server is running. This can be checked using a console command on the server

where it is installed:

[useri@iarc ~1# sudo service iarcd status
Status of IMiS/ARChive HSM Storage Server: iarcd (pid 23209 23203) is running...
[user1@iarc ~1#

Cause of problem 1

The client is attempting to open an object that is correctly entered in the internal server

database but the content of the object is not where it should be or is missing.

Solution for problem 1

The following will be needed:

e Data on the object identifier from the application using the archive system

(for example 4c9f36d38b4d6985b1ec111a5a14a7e9db89edd0ch36923010b6624c667ef142);

e The content of the IdentPassword parameter from the server configuration file

/etc/iarc.conf.

e [nformation about the customer.

Send this information to the email address support@imis.eu.

Our technical staff will then decrypt the object identifier that is the basis of the information and
further restoration processes with backups or searches in the database system if it is not
located in its source location. This is only possible if someone with administrator rights on the

server has moved or deleted the object from its original location.

Less frequent problem 2

When attempting to view an object saved on IMiS®/ARChive Server, IMiS®/Scan or IMiS®/View
clients return “Error reading IMiS object”. Other clients (IMiS®/Storage Connector, for
example) receive the following message when attempting to retrieve the object from the

server:

Unable to locate database record for entity <decimal value>

The server is accessible on the network, and the service at the port where it is listening is
responding (checked using the telnet program)

[user1@test ~1# ping iarc.acme.com

PING iarc.acme.com (10.1.1.10) 56(84) bytes of data.

64 bytes from iarc.acme.com (10.1.1.10); icmp_seqg=1 ttl=64 time=0.653 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=2 ttl=64 time=0.190 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=3 ttl=64 time=0.186 ms
64 bytes from iarc.acme.com (10.1.1.10); icmp_seg=4 ttI=64 time=0.183 ms
64 bytes from iarc.acme.com (10.1.1.10): icmp_seg=5 ttl=64 time=0.164 ms

mailto:support@imis.eu

--- iarc.acme.com ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 3003ms
rtt min/avg/max/mdev = 0.164/0.450/1.530/0.540 ms

[user1@test ~1# telnet iarc.acme.com 16807
Trying 10.1.1.10...

Connected to iarc.acme.com.

Escape character is '

Connection closed by foreign host.

[useri@test ~1#

The server is running. This can be checked using a console command on the server where it is

installed:

[user1@iarc ~1# sudo service iarcd status
Status of IMiS/ARChive HSM Storage Server: iarcd (pid 23209 23203) is running...

[user1@iarc ~1#

Cause of problem 2

The client is attempting to open an object that has not been entered in the internal server

database.

Solution for problem 2

The following will be needed:

e Data on the object identifier from the application using the archive system

(for example 4c9f36d38b4d6985b1ec111abal4a7e9db89edd0cb36923010b6624c667ef142).

e The content of the IdentPassword parameter from the server configuration file

/etc/iarc.conf.
e The internal database (the content of the /iarc/db directory) in compressed or text form.
¢ |nformation about the customer.

Send this information to the email address support@imis.eu.

Our technical staff will then decrypt the object identifier that is the basis for the information
and further processes for determining the status of the internal database and the reason the
record that is the basis for correct operations with the object in the server inventory cannot

be found.

mailto:support@imis.eu

9.4 List of service errors entered in the operation log

9.4.1 Level 0 — Emergency

EMERG: “Unknown exception caught.”

EMERG: Exception caught <description>

This error occurs when a serious error occurs in the operations of IMiS®/ARChive Server
which is listed or foreseen as a possible error.
There can be a number of reasons for this, from the environment to possible errors in the

application code of the service.

9.4.2 Level1-Alert
ALERT: “Out of memory.”

This error means that IMiS®/ARChive Server has run out of available working memory.
The server can continue its work in this state, but it is critical. If the service is exposed to this

environment for a longer period of time, it could stop working.

ALERT: “Thread <thread identifier> error number <error number>. Exiting...”

This error occurs when an error that cannot be fixed occurs in one of the threads.
Depending on the seriousness of the error, IMiS®/ARChive Serverv can terminate the thread
or the entire program executing it, as continuing could threaten the consistency of the

persistent data.

ALERT: "Maximum number of child processes reached.”

This notification means that IMiS®/ARChive Server can no longer start its connecting
sub-process and therefore cannot process new requests.
The server will continue running until new resources become available or the number of

sub-processes is increased (setting in the /etc/iarc.conf file).

ALERT: “Shared memory (hnd = <no.>, ptr = <no.>) error <error number>"

This notification appears if IMiIS®/ARChive Server has detected an error or impropriety in work
with a portion of shared memory used for communication between processes.
The server stops immediately because communications between processes in the

IMiS®/ARChive family are no longer possible.

9.4.3 Level 2 — Critical

ALERT: “"Out of memory. Cannot continue.”

This error means that IMiS®/ARChive Server has run out of available working memory.
The server can continue its work in this state, but it is critical. If the service is exposed to this

environment for a longer period of time, it could stop working.

CRIT: “Error is unrecoverable. The process will terminate.”

An error has occurred due to which the process cannot continue working.
This notification is usually only the result of some other error that occurred immediately prior

to this and that is also listed in the error log.

CRIT: "Unsupported client address structure at <process number>.”

IMiS®/ARChive Server has detected an unsupported client address structure in process
<no. of process>. The error means communication between the client and server has been

terminated.

CRIT: “Signal SIGSEGV occured Process will shut down ..."

An error occurred in work with IMiS®/ARChive Server’s working memory.
The server immediately shuts down. The server administrator will need to intervene, and will

usually have to restart the process.

CRIT: “No child process can accept new connection.”

Communication sub-processes cannot accept new requests.

This error is usually the result of another error or a lack of server resources.

CRIT: “Cannot initialize LC COLLATE setting.”
CRIT: “Cannot initialize LC CTYPE setting.”

IMiS®/ARChive Server cannot set the desired region settings for sorting and translating
characters outside the scope of the ACSII code table.
If this setting is just one of the available settings when the locale —-a command is run,

this error is only theoretical.

CRIT: “New process couldn't accept new connection.”

IMiS®/ARChive Server ran out of resources. It started a new communication process but

there aren’t enough resources to accept the new requests.

CRIT: “Error <error number> while recording session close to audit log.”

CRIT: “Error < error number > while recording session open to audit log.”

An error occurred when making an entry in the audit log, the entry was not successfully sent
and entered in the internal database. A number of causes are possible. The server

administrator will need to intervene.

CRIT: “Locale parameter ‘<parameter value>' for LC COLLATE in not formated according to

POSIX standard and cannot be used. Use format Il CCL.CHARSETI[@variantll.«

CRIT: “Locale parameter '<parameter value>' for LC CTYPE in not formated according to POSIX

standard and cannot be used. Use format Il CCI.CHARSETI[[@variantll.”

The given regional settings parameter for sorting and translating characters outside the
scope of the ASCII code table is not in the correct POSIX format.

See the CountrylLanguage setting in the [Serverl section of the configuration file.

CRIT: “Error <error number> while recording server's session to audit log.”

Error entering the server session in the audit log of internal database sessions.
A number of causes are possible. The server administrator will need to intervene.

This error is only theoretical.

CRIT: “Error <error number> opening file <file name>. Terminating process.”

CRIT: “Error <error number> while reading file <file name>. Terminating process.”

CRIT: “File <file name> is too small (<number> bytes). Terminating process.”

CRIT: »Invalid header data in file <file name>. Terminating process."CRIT: "Error <error number>

seeking in file <file name>. Terminating process.”

CRIT: “File <file name> is too large. Terminating process. "CRIT: "File <file name> has invalid size

(<number> bytes). Terminating process.”

CRIT: “Error <error number> while reading file <file name>. Terminating process.”

CRIT: “Audit log config check: Crypt engine error. Terminating process.”

CRIT: “Audit log config check: Data size doesn't match. Terminating process.”

CRIT: “Audit log config check: Checksum error. Terminating process.”

CRIT: “Audit log config check: Crypt engine error. Terminating process. "CRIT: "Error <error

number> while writing to file <file name>. Terminating process.”

CRIT: “Audit log config check: Database error. Terminating process. "CRIT: "Audit log config

check: Unexpected unknown error. Terminating process.”

The errors listed above indicate problems in the system for detecting changes to the audit log
settings. These errors can be resolved by deleting the /iarc/db/iaalce.bin file; however, they
should be taken seriously and their causes should be looked into. Removing this file will cause
“changes” to be entered in the audit trail when the server is restarted, even though changes
have not occurred.

The current settings will be marked as changed, as the setting status is not available to the
service prior to start up (the changes are saved in encrypted binary form in this file).

CRIT: “Error while recording server's session to audit log.”

CRIT: “Malformed Entity identification configuration. Reason: ‘<reason>"

9.4.4 Level 3 —-Error

ERR: “Read returned with error: <error number>."

An error occurred when reading from the network socket for communication with the client.
The error is not critical and usually only means a sudden, irregular termination of the session

by the client.

ERR: “Write returned with error: <error number>.”

An error occurred when writing for the network socket for communicating with the client.
The error is not critical and usually only means a sudden, irregular termination of the session

by the client.

ERR: “No select file descriptor available.”

The maximum number of open files has been reached. It is not possible to use the new node (i-

node) that IMiS®/ARChive Server needs for work with the object.

ERR: “IDFromldentShort: Unknown ObjectID version information.”

The client requested an object whose identifier structure is not recognized by IMiS®/ARChive
Server, or which it cannot decrypt or does not have entered in its internal database.

The server denied the client request.

ERR: “Cannot create object file <file code/name>.”

When entering an object in the volume an error occurred because a file with the object already
exists. A specialist from the manufacturer needs to look at it and figure out why a file with the

object identifier already exists at this location.

ERR: “Unknown file handling error.”

An unforeseen error occurred during work with the object. IMiS®/ARChive Server denied the

request.

ERR: “Cannot open object file <object file name>.”

The client has requested an object from IMiS®/ARChive Server that is entered in the inventory,

but the object file does not exist.

ERR: “ObjRemove error <error number>.”

IMiS®/ARChive Server has received a regular request to delete an object but deletion cannot
be performed. A specialist from the manufacturer needs to have a look to figure out why
deletion is not possible (this is usually due to rights over the file system and HSM inventory

files).

ERR: “Cannot open object file <object file name>."

An error occurred when attempting to read an object, IMiS®/ARChive Server cannot open the
object. A specialist from the manufacturer needs to have a look because the object is entered
in the inventory but the process cannot be performed (this is usually due to rights over the file

system and HSM inventory files).

ERR: “Not enough space available in profile <profile [D>.”

There is not enough space in the volumes belonging to a profile <profile ID>.

ERR: “Invalid profile number.”

An incorrect or non-existent profile number was used in the client’s request.

ERR: “Unexpected FIN!"

An IMiS® client unexpectedly closed a session or sent a signal to close a session after

IMiS®/ARChive Server already closed the session because it was inactive.

ERR: “Error in ConnlInfoGetLib request (req->seq). Skipping processing.”

An IMiS® client sent an incorrect request for the communication library to IMiS®/ARChive

Server.

ERR: “Cannot open file <library name>.”

An IMiS® client sent IMiS®/ARChive Server the correct request for a communication library,
but the library is not where it should be. This error is usually the result of incomplete
installation or incorrect installation in the /etc/iarc.conf configuration file or a problem with the

rights of the iarc user.

ERR: “Unknown object handle <number/handle>.”

The operating system on IMiS®/ARChive Server sent an irregular object file handle.

This error is most likely the result of the operating system or file system not functioning

properly.

ERR: “Unknown transmission handle.”

The operating system on IMiS®/ARChive Server sent an irregular handle for the connection

node (i-node). This error is most likely the result of the not functioning properly.

ERR: “Unknown Conninfo request: <number> - ignoring!”

IMiS®/ARChive Server received an irregular request for data about the connection to the

client. The server rejected the request.

ERR: “Unknown External ID request size (request size).”

IMiS®/ARChive Server received a request for an identification number for a new object for a
so-called external system (SAP/R3 for example). The size of the requested identification

number is not regular. The server rejected the request as invalid.

ERR: “Invalid request size: <request size>.”

IMiS®/ARChive Server received a request with an irregular size. The server rejected the

request as invalid.

ERR: “Unknown request <request number> received. Closing connection.”

IMiS®/ARChive Server received an irregular request and closed the open connection.
This is usually the result of attempting to connect through the server’s TCP port with a

protocol that the server does not recognize.

ERR: “Socket <socket number> closed for reading on client side. Connection closed.”

IMiS®/ARChive Server detected that the socket for communicating with the client is closed,

which is why it also closed the connection on its end.

ERR: “Socket <socket number> write error <error number>.«

IMiS®/ARChive Server cannot communicate with the client through the socket.

ERR: “Error reading message queue (error: <error code>).”

When exchanging data between processes in the IMiS®/ARChive Server family, an error

occurred while reading data from the queue for inter-process communication.

ERR: “Ident(): Initializing crypto engine.”

An error occurred when initializing the system for object identifiers encryption.
This error is only theoretical and is the result of an error by the programmer; a specialist from

the manufacturer should be consulted.

ERR: “Ident(): Setting internal key.”

An error occurred when setting a key for the first level of object identifier encryption.
This error is only theoretical and is the result of an error by the programmer; a specialist from

the manufacturer should be consulted.

ERR: “Ident(): Setting external key.”

An error occurred when setting a key for the second level of object identifier encryption.
This error is only theoretical and is the result of an error by the programmer; a specialist from

the manufacturer should be consulted.

ERR: “Ident(): Internal encrypting.”

An error occurred on the first level of object identifier encryprion.
This error is only theoretical and is the result of an error by the programmer; a specialist from

the manufacturer should be consulted.

ERR: “Ident(): External encrypting.”

An error occurred on the second level of object identifier encryption. This error is only
theoretical and is the result of an error by the programmer; a specialist from the manufacturer

should be consulted.

ERR: “IDFromldent(: Initializing crypto engine.”

An error occurred when initializing the system for object identifiers decryption.
This error is only theoretical and is the result of an error by the programmer; a specialist from

the manufacturer should be consulted.

ERR: “IDFromldent(): Setting external key.”

An error occurred when setting a key for the first level of object identifiers decryption.
This error is only theoretical and is the result of an error by the programmer; a specialist from

the manufacturer should be consulted.

ERR: “IDFromldent();: Setting internal key.”

An error occurred when setting a key for the second level of object identifier decryption.
This error is only theoretical and is the result of an error by the programmer; a specialist from

the manufacturer should be consulted.

ERR: “IDFromldent(): External decrypting.”

An error occurred on the first level of object identifier decryption. This error can occur

because an incorrect identifier was sent by the client.

ERR: “IDFromldent(): Internal decrypting.”

An error occurred on the second level of object identifier decryption. This error can occur

because an incorrect identifier was sent by the client.

ERR: “IdentShort(): error <error number>while ciphering internal block.”

An error occurred on the first level of ciphering a short object identifier.

This error is only theoretical; a specialist from the manufacturer should be consulted.

ERR: “IdentShort(): error <error code>while ciphering external block.”

An error occurred on the second level of ciphering a short object identifier.

This error is only theoretical; a specialist from the manufacturer should be consulted.

ERR: “IDFromldentShort: 1st Server id (<server identifier>) does not match.«

The client sent the incorrect value for the short form of the object identifier.

ERR: “IDFromldentShort: 2nd Server id (<server identifier>) does not match.”

The client sent the incorrect value for the short form of the object identifier.

ERR: “IDFromldentShort: Unknown ObjectID version information (<decimal value>).”

The client sent the incorrect value for the short form of the object identifier, or the value was
created with a newer version of IMiS®/ARChive Server and cannot be deciphered by the

server.

ERR: “IDFromldentShort(): error <error number> while deciphering external block.”

ERR: “IDFromBytesL(: error <error number> while deciphering external block.”

An error occurred on the first level of deciphering the short form of the object identifier.
The error occurred because the incorrect identifier was used for the short form sent from the

client.

ERR: “IDFromldentShort(: error <error number> while deciphering internal block.”

An error occurred on the second level of deciphering the short form of the object identifier.
The error occurred because the incorrect identifier was used for the short form sent from the

client.

ERR: “IDFromldentShort: Invalid ID data.”

An error occurred due to incorrect checking data content after deciphering the short form of
the object identifier. The error occurred because the incorrect identifier was used for the

short form sent from the client.

ERR: “Volume client error.”

An unidentified error occurred in the operations of the module for managing disk media.
The cause of the error is usually operating system malfunction due to a lack of system

resources.

ERR: “Invalid audit query size <decimal value>"

The server received a request for an audit trail query, and the size of the request is not

correct. This error is caused by a client that is not functioning properly; it is only theoretical.

ERR: “Invalid sess cond.type (<decimal value>)"

The server received a request for an audit trail query in which an incorrect value for specifying
session criteria was entered. This error is caused by a client that is not functioning properly;

it is only theoretical.

ERR: “Invalid sess cond.offset (<decimal value>)”

The server received a request for an audit trail query in which an incorrect condition structure
for searching sessions was entered. This error is caused by a client that is not functioning

properly; it is only theoretical.

ERR: “Invalid ts cond.offset (<decimal value>)"

The server received a request for an audit trail query in which an incorrect condition structure
was entered for the event time period. This error is caused by a client that is not functioning

properly; it is only theoretical.

ERR: “Invalid objid cond.offset (<decimal value>)"

The server received a request for an audit trail query in which an incorrect condition structure
was entered for specifying object identifiers. This error is caused by a client that is not

functioning properly; it is only theoretical.

ERR: “AuditQuery::GetNextAddress(), line <decimal value>, error <decimal value>"

The server received a request for an audit trail query in which the conditions for searching the
network addresses of clients contain an incorrect form of data. This error is caused by a client

that is not functioning properly; it is only theoretical.

ERR: “ObjectsQueryArray::FindEvents(); Error decrypting object id.”

The server received a request for an audit trail query in which the object identifier contains
incorrect values. This error is caused by a client that is not functioning properly; it is only

theoretical.

ERR: “msgctl(<system identifier>, IPC_ RMID) error <error number>: <description of system

error>"

A system error occurred when setting up the queue for communication between processes,
specifically when attempting to remove the current queue. The cause of the error is usually an
operating system that is not functioning properly, and it is described in detail in <description of

system error>.

ERR: “Could not connect to iavol server. Session canceled.”

An error occurred when connecting to the module for work with disk media.
The cause of the error is usually a lack of system resources or the inability of the operating

system to serve any more client sessions.

ERR: “BuildVolTree(): Volume <volume |ID> not mounted.”

An error occurred in the use of a specific volume. The volume cannot be used due to a previous

error which has already been entered in the log.

ERR: “Error closing file descriptor.”

A system error occurred when closing a file. The error is usually the result of an error by a

programmer; it can also be caused by an operating system that is not functioning properly.

ERR: “accept() returned error <error number>.”

ERR: “acceptl) error <error number>: <description of system error>.”

An error occurred when starting a new session with a client. The cause of the error is probably
an excessive number of currently running client sessions; the second form of the message also

contains a description of the cause in <description of system error>.

ERR: “Passed fd <decimal value> is not a listen socket.”

An error occurred when listening for requests to start new sessions with clients. The error is
caused by an error in the program and is only theoretical. A specialist from the manufacturer

should be contacted.

ERR: “Error creating thread: Ox<hexidecimal value>.”

An error occurred when starting a new process thread in the program. The cause of the error

is usually a lack of system resources.

ERR: “Stats counter error <error number>: “<description of system error>.”

An error occurred when saving statistical data about the number of instances of access to the
objects in a set time period. The error is caused by an operating system that is not functioning

properly.

ERR: “Profile(<hexidecimal value >): No volumes on level <level number>. Emergency migration

skipped.”

ERR: “Profile(<hexidecimal value >): No volumes on level <level number>. Scheduled migration

skipped.”

An error occurred when attempting to migrate profile objects to a higher level (<level
number>) in the volume hierarchy. The error occurred because the profile on this level does

not have volumes defined and there is not enough space on the lower level.

ERR: “mkstemp(“<file name>") error <error number>.”

An error occurred when creating a temporary file with the name <file name>.
The error is the result of insufficient space on the disk and the rights of user iarc; it can also be

caused an operating system that is not functioning properly.

ERR: “unlink(“<file name>") error <error number>.”

An error occurred when deleting a file with the name <file name>.
The error is caused by an error in the program; it is probably an error with the access rights of

user iarc or the operating system.

ERR: “User ‘<user>' at connection <number> denied due to authentication failure -

Authentication request sequence mismatch (request subid:proto:stage =

COPN CLIAUTH:SRPBA:< number >, valid COPN CLIAUTH:SRPBA:< number >, session stage =

<number>);”

ERR: “Error creating server SRPC-6a evidence for user ‘<user>'. Connection <number> denied

(reason: <reason>).”

ERR: “Connection <number> denied due to authentication failure - Authentication request

sequence mismatch (request subid:proto:stage = COPN CLIAUTH:SBPBA:<number>, valid
COPN CLIAUTH:SRPBA:[<number>/<number>], session stage = <number>);"

ERR: “Connection <number> denied (reason: Unknown Authentication mode requested (id =

<number>))”
An error occurred during user authentication. There are a number of possible causes, from
incorrect user credentials to incorrect use of the authentication protocol (in rare cases).

Access is denied to these sessions.

ERR: “Level of volume in profile exceeds maximal allowed value.”

The current volume level exceeds the maximum allowed value (16).

ERR: “GetVolumelnfo error <error description>."

An error occurred when opening a service volume in content storage.

ERR: “"Error connecting to database. Reason: ‘<error description>' at’<file>:<row>"

An error occurred when connecting to the database. If this error occurs a specialist from the

manufacturer should perform a database check.

ERR: “Error opening archive.”

An error occurred when opening the archive. This is probably due to an error in the data or
inconsistent archive settings. If this error occurs a specialist from the manufacturer should

perform a check up.

ERR: “IAVolume: Unable to retrieve a database session!”

The program is having problems retrieving a database session. If this error occurs a specialist

from the manufacturer should perform a check up.

ERR: “Database exception <error description>!"

The program is having problems accessing the database. The solution depends on the error
description. If a solution cannot be found based on the description, a specialist from the

manufacturer should be consulted.

ERR: “Access mode ‘<access mode>' is unsupported.”

ERR: “Unsupported access mode ‘<access mode>'."

An invalid access mode is listed in a request. The allowed values are: “BO” and “RW”.

This is an error on IMiS®/Client.

ERR: “ACL entry for ‘<directory entity>'is internal and cannot be updated.”

The access control list cannot be changed for system directory entities.

ERR: “Address '< network address>' structure is not supported.”

The incorrect network address format has been used. A valid host name, IPv4 or IPvB address
must be entered with an optional extension for the network port. The network address and

port are separated with a colon, “.” .

This is an error in the product settings.

ERR: “Attribute 'destination' contains the value '%s' which resolves to an unknown attribute”

ERR: “Attribute 'destination’ identifies the attribute '%s' which type '%u' is not supported for

entity identification storage”

An error occurred when setting the counters for automatic entity numbering.

ERR: “AuditQuery::GetNextAddress(], line %d, error %d”

Error getting the IP address from the request to view the audit trail.

ERR: “Binary, File and StringMax are unsortable.”

Sorting of attributes of the types “Binary”, “File” and “StringMax” is not possible.

The sorting function is not being used properly on an IMiS®/Client.

ERR: “Both IP addresses need to be of the same length and same protocol.”

Error getting the range of IP addresses from a request to view the audit trail.
Both end values of the range must be from the same family. IMiS®/Client has sent an incorrect

range of values.

ERR: “Can't move an entity into its own subtree.”

An entity cannot be moved into its own child entity.

ERR: “Classification code ‘<classification code>' exceeds maximum length of 20 characters.”

The largest allowed length of a classification code is 20 characters.

ERR: “Collection handle ‘<hexadecimal value>'is invalid.”

The reference (handle) to the collection is not valid. Possible reasons for this error include:
e The collection was previously closed.

e The session from which the reference originates was closed and then reopened as a new

session.

e The handle never existed.

This is an error on IMiS®/Client.

ERR: “Configuration requires client computer name to be provided.”

IMiS®/ARChive Server is set up so that when a new session is opened it requires the name of
the computer from which the session was started.
This is a settings error if the name of the computer is not required or an error in IMiS®/Client,

if the name of the computer is required.

ERR: “Configuration requires client username to be provided.”

IMiS®/ARChive Server is set up so that when opening a new session, it demands the name of
the user who started a session with authentication methods before SRP-6a.
This is a settings error if the user name shouldn’t be required information or a client error if

the user name is required.

ERR: “Counter definition ‘<counter definition >' does not contain a required variable ‘<variable

name>""
An error occurred in the counter definition. The name of the variable could not be found in the

definition of the counter for automatically creating classification codes.

ERR: “Decrypted Authentication payload starting sequence is invalid.”

This is an authentication error. This is an error on IMiS®/Client.

ERR: “Destination is already a parent of the specified entity. Move is not possible.”

The move would not change the location of the entity in the classification scheme and therefore

does not make sense. The move is not performed. This is an error on IMiS®/Client.

ERR: “Element count must be greater than 0.”

The number of elements on the side of the entity collection must be positive.

This is an error on IMiS®/Client.

ERR: “Empty request received.”

A request with no content was received. This is an error on IMiS®/Client.

ERR: “Encoding (<number>) not recognized.”

The requested encoding of unique entity identifiers in the audit query results is not recognized.

The following values are allowed: 1 (BASE 18], 2 (BASE 64) and 3 (BASE 85).

ERR: “Entity handle ‘<hexadecimal number>is invalid.”

ERR: “Entity handle is invalid.”

The reference (handle) to the entity is not valid. Possible reasons for this error include:
e The entity was previously closed.

e The session from which the reference originates was closed and then reopened as a new

session.
e The reference never existed.

This is an error on IMiS®/Client.

ERR: “Entity handle is invalid or you're trying to open a binary object in read-write mode while

the parent entity is opened in read-only mode.”

The reference is invalid (for the above error description see error Entity handle is invalid)
or an attempt has been made to open a hinary object in Read and Write mode although the

parent entity is open in Read Only mode.

ERR: “Entity handle must be provided.”

A request without a handle is invalid. This is an error on IMiS®/Client.

ERR: “Entity id type cannot be NONE.”

The unique entity identifier type in the request cannot be N (NONE).
The following values are allowed: | (encrypted internal), E (external) or C (classification code).

This is an error on IMiS®/Client.

ERR: “Entity identifier not specified.”

ERR: “Entity unigue identifier (id or handle) must be provided.”

The request does not contain a valid unique entity identifier.

This is an error on IMiS®/Client.

ERR: “Entity type ‘<type>'is unknown.”

The request does not contain a valid entity type. The following values are allowed: C (Class),

F (Folder) and D (Document). This is an error on IMiS®/Client.

ERR: “Entity type ‘<number>'is not a valid template entity type.”

ERR: “Template enumeration type ‘<number>'is not a valid entity type.”

The template contains an invalid value for the type of entity it describes.

A range of values from 1 to 5 is allowed. This is an error on IMiS®/Client.

ERR: “Error converting IP address”

An error occurred when converting a character string to an IP address.

This is an error on IMiS®/Client.

ERR: “Exactly 2 id tags are required in mv request.”

A request to move must contain exactly two unique entity identifiers.

This is an error on IMiS®/Client.

ERR: “Insufficient rights to create file property in the specified entity.”

ERR: “Insufficient rights to create sub-entities in the destination entity.”

ERR: “Insufficient rights to create sub-entities under the specified parent.”

The user does not have sufficient rights to perform these operations. If the user should have
the rights needed to perform these operations, the Access Control List should be checked and

updated as needed.

ERR: “Invalid acl scope request ‘<character>".”

An invalid identifier for the Access Control List elements has been used in a request.
The following values are allowed: N (None), E (entities) and A (Attributes).

This is an error on IMiS®/Client.

ERR: “Invalid date part (<date part>).”

ERR: “Invalid date part.”

ERR: “Invalid time part <time part>)."

ERR: “Invalid time part.”

ERR: “Invalid timestamp.”

An error occurred when converting a character string to a date/time.

ERR: “Invalid old password.”

ERR: “New password required.”

ERR: “Old password required.”

An error has occurred when attempting to change a password. Either the old password has
not been given (old password required), or is incorrect (invalid old password) or the new

password has not been entered (new password required). This is an error on IMiS®/Client.

ERR: “Invalid property scope ‘<character>' requested.”

An invalid value was entered for the scope of returned properties in an “rd” request.
The following values are valid: N (No return), S (Listed), A (All) in P (Public).

This is an error on IMiS®/Client.

ERR: “Invalid tag %u.”

ERR: “Invalid tag name %u.”

An error occurred executing the request. An invalid XML tag was used.

This is an error on IMiS®/Client.

ERR: “Invalid value id ‘<number>' cannot be opened.”

An invalid value was used for a binary content identifier.

This is an error on IMiS®/Client.

ERR: “Invalid XML request: Unknown root tag ‘<name>' found.”

An unknown root tag was used in the request.

This is an error on IMiS®/Client.

ERR: “Invalid/Unsupported key type <identifier>.”

An unsupported type of authentication key was used.

This is an error on IMiS®/Client.

ERR: “Malformed classification code ‘<code>' (<error>)."

A malformed classification code was used.

ERR: “Malformed counter definition '%s’.”

A malformed definition was used for the counter for generating classification codes.

This is an error on IMiS®/Client.

1y

ERR: “Malformed expression '%s'.

A malformed expression was used in a codelist.

This is a configuration error.

ERR: “Newly created Binary object identified by '%llu' was not created from this session and

cannot be assigned to the property '%s'.”

ERR: “Newly created Binary object identified by '%llu’ was not created from this session.”

An invalid binary object identifier was sent in the request.

This is an error on IMiS®/Client.

ERR: “No legacy archival configuration for profile '%s"

The archive profile is not included in the configuration for archiving.

ERR: “Page element count ‘<number of elements>' exceeds maximum allowed size of '< number

of elements>' elements.«

The number of elements of the page with the entity collection must be smaller than the largest

allowed number of elements (10000). This is an error on IMiS®/Client.

ERR: “Parent required but not specified.”

The request must contain the unique identifier of the parent entity under which the new entity

is being created. This is an errar on IMiS®/Client.

ERR: “Property ‘<attribute name>' is not a streamable property.”

An incorrect attribute type was used. The data stream is only possible with attributes of the

types “Binary”, “File” and “StringMax”. This is an error on IMiS®/Client.

ERR: “Property code ‘<attribute name>" Malformed boolean value ‘<value>".”

An incorrect value was given for a binary attribute in the request. The following values are

allowed: O, 1, true or false. This is an error on IMiS®/Client.

ERR: “Property name must be provided.”

The request must contain a name of the attribute. This is an error on IMiS®/Client.

ERR: “Provided client application name contains invalid UTF-16 characters.”

The name of the client in the request contains a UTF-16 character that is not allowed.

This is an error on IMiS®/Client.

ERR: “Provided client application name exceeds maximum length of <number> UTF-16

characters.”

The client name in the request is too long. This is an error on IMiS®@/Client.

ERR: “Provided client local address '<IP address>' cannot be converted into its binary form

(Detail: <error description>)"

An error occurred when converting an internal IP address. This usually means that the wrong

form of the address was sent. This is an error on IMiS®/Client.

ERR: “Provided client local address contains invalid UTF-8 characters.”

The client’s local IP address in the request contains a UTF-8 character that is not allowed.

This is an error on IMiS®/Client.

i

ERR: “Provided client local address exceeds maximum length of <number> UTF-8 characters.’

The client’s IP address in the request is too long.

This is an error on IMiS®/Client.

ERR: “Provided computer name contains invalid UTF-16 characters.”

The name of the user’s computer in the request contains a UTF-16 character that is not

allowed. This is an error on IMiS®/Client.

ERR: “Provided computer name exceeds maximum length of <number> UTF-16 characters.”

The name of the user’s computer in the request is too long.

This is an error on IMiS®/Client.

ERR: “Provided username contains invalid UTF-16 characters.”

The user name in the request contains a UTF-16 character that is not allowed.

This is an error on IMiS®/Client.

ERR: “Provided username exceeds maximum length of <number> UTF-16 characters.’

The user name in the request is too long. This is an error on IMiS®/Client.

ERR: “Reason for deletion required but missing or empty.”

The user is required to give a reason for deletion. This is an error on IMiS®/Client.

ERR: “Server was unable to decrypt authentication payload using any configured crypto

contexts.”
A problem occurred in an older interface, as it was not possible to decrypt the authentication

payload. This is an error on IMiS@/Client.

ERR: “Start index ‘<start index>' exceeds collection element count ‘<number of elements>'."

An invalid start index was used in the collection. The start index must not be greater than the

number of elements in the collection. This is an error on IMiS®/Client.

ERR: “Template ‘<name>' is internal and cannot be used.”

Internal templates cannot be used.

This is an error on IMiS®/Client.

ERR: “The password is not encoded in correct UTF-8 sequence.”

The password is not a correct UTF-8 character string.

This is an error on IMiS®/Client.

ERR: “The SRPBA group vou provided is not supported (id=<number>).”

The SRPBA group is not supported.

ERR: “Time must be in range!”

ERR: “Timestamp must be a range.”

The request for a query of the audit trail must contain a time range for the search.

This is an error on IMiS®/Client.

ERR: “Unable to make query without any parameters.”

The request for a query of the audit trail must contain at least one parameter.

This is an error on IMiS®/Client.

ERR: “Unable to search objects by object id range.”

ERR: “We cannot have ranges of objects”

The request for a query of the audit trail cannot contain a range of unique object identifiers.

This is an error on IMiS®/Client.

ERR: “Unknown collection management operation ‘<character>'."

The request contains a collection management value that is not allowed. The values C

(Delete collection) and | are allowed. This is an error on IMiS®/Client.

ERR: “Unknown property ‘<attribute name>'."

ERR: “Unknown property code ‘<attribute name>'."

This attribute does not exist. This is an error on IMiS®/Client.

”

ERR: “Unknown stream handle (<hexadecimal number>). Ignoring request.

An incorrect reference (handle) to a data stream has been given.

This is an error on IMiS®/Client.

ERR: “Unknown value id ‘<number>' requested or error opening a stream.”

An invalid value was used for a binary content identifier.

This is an error on IMiS®/Client.

ERR: “Unknown XML Parser error.”

An unknown error occurred when parsing an XML request.

This is an error on IMiS®/Client.

ERR: “Unknown xml tag encountered: ‘<number>'".”

”

ERR: “Unknown xml tag encountered: '<string>

When parsing an XML request, an unknown XML tag appeared.

This is an error on IMiS®/Client.

ERR: “Unsupported object id size.”

Only two lengths are allowed for reading unique entity identifiers: 24 and 32 characters.

This is an error on IMiS®/Client.

ERR: “XML Parser error: domain=%d, code=%d, msg='%s', level='%s', line=%d"

A problem occurred when parsing an XML request. This is an error on IMiS®/Client.

ERR: “You cannot assign an existing Binary object to the property '%s' from another entity.

1y

The offending value is '%llu’.

The same binary attribute cannot be assigned to two different entities.

ERR: “You cannot create a <entity type> from template ‘<template name>' (Reason: Template is

not of type <entity type>).”

The template cannot be used for the given entity type.

This is an error on IMiS®/Client.

ERR: “Unable to open the listening port on address ‘[<address>l:<port>' (Reason: ‘<reason>')."

ERR: “Unable to bind the listening socket to address '[%s]:%u' (Reason: '%s').”

An error occurred when opening the network address for serving requests. The reason is

usually listed in the “reason” part of the message.

ERR: “Access denied. System entities cannot be opened.”

The “open” operation cannot be performed on system entities.

ERR: “Classification code cannot be set for existing entities.”

The classification code cannot be changed for an existing entity.

ERR: “Classification code is set to be generated automatically.”

The classification code is automatically generated. It cannot be set manually.

ERR: “Invalid stream object for CS 0BJ UPDATE request.”

An invalid request has been made to open a stream on an old interface.

ERR: “Only end templates can be removed.”

The template the user would like to remove cannot have child templates.

ERR: “Entities based on template ‘<template name>' exist. Template cannot be removed.”

A template cannot be removed if it was used for at least one entity.

ERR: “Invalid CS OBJ CREATE request packet size: <length>.”
ERR: “Invalid CS OBJ OPEN request packet size: ‘<length>"."
ERR: “Invalid CS OBJ UPDATE request packet size: ‘<length>"."

Invalid request length with an old interface.

ERR: »<attribute name>' property not found.”

This attribute does not exist.

ERR: “Default storage profile is not set.”

An error occurred in the settings. A default storage profile must be defined.

ERR: “Storage profile ‘<ID>' doesn't exist.”

An error occurred in the settings. A storage profile with this ID does not exist.

ERR: “Error acquiring an instance of Full Text Index Service provider.”

An error occurred in the settings.

ERR: “Classification code is set to be generated automatically but generator is not configured

for the entity's hierarchy level.”

An error occurred in the settings. Automatic classification code generation has not been set

for all levels in the classification scheme.

ERR: “Classification code must be set by creator and cannot be empty.”

The classification code is required information.

ERR: “Classification code must be set to be generated automatically for the destination entity's

sub-entities.”

ERR: “Classification code must be set to be generated automatically for the whole moving

entity's hierarchy.”

ERR: “Missing classification code generator. Entity type: ‘<entity type>', Absolute level: <level>,

Relative level: <level>.2

An error occurred in the settings. The move operation requires automatic classification code

generation to be set in the target tree.

ERR: “Directory entity with name ‘<name>' (id=<number>) is deleted.”

ERR: “Group ‘<name>' (id=<number>) has been deleted.”

A user is attempting to delete an entity that has already been deleted.

ERR: “Directory entity ‘<name>' (id=<number>) has been deleted while being edited.

Group ‘<name>' (id=<number>) has been deleted while being edited.”

A user is attempting to edit an entity that has already been deleted.

ERR: “Directory entity ‘<name>' (id=<number>) is not being edited.”

ERR: “Group ‘<name>' (id=<number>) is not being edited.”

A user is attempting to edit an entity that was not opened in Write mode.

ERR: “Non-empty entities cannot be deleted.”

An entity being deleted cannot contain other entities. The child entities must first be deleted.

ERR: “Entity '<id>' cannot be opened in exclusive mode.”

The entity is already open in Write mode in some other session.

ERR: “Value '<id>' is currently being edited. Close all editable streams before opening a new

”

one.

ERR: “Value '<id>' is currently being edited through stream ‘<stream reference>'. Close it

before opening a new one.”

An attribute of the data stream type is already open in write mode.

ERR: “Closed entities cannot be edited.”

The status of the entity in question (or its parent) is “Closed”. No changes can be made to a

closed entity.

ERR: “Access denied. Reguest requires user-credentials authenticated session or higher.”

To execute the desired operation, a session must be opened with authentication.

ERR: “Adding new entities under closed entities is not allowed.”

The status of the entity in question (or its parent) is “Closed”. New child entities cannot be

added under a closed entity.

ERR: “Destination status is 'Closed'. Adding new entities under it is not allowed.”

No changes to an entity with “Closed” status is allowed. This includes adding new child entities.

ERR: “Access denied. (You do not have the right to delete the property ‘<name>')"

The user does not have the right to delete attributes in the entity.

ERR: “Access denied. (You do not have the right to create the property ‘<name>")"

The user does not have the right to add attributes to the entity.

ERR: “Access denied. (You do not have the right to edit the property ‘<name>')"

The user does not have the right to edit attribute values in the entity.

ERR: “Query result set is too large. Try to decrease datetime range.”

The result of the audit trail query includes more results than the system is capable of
processing. The search parameters need to be changed to return fewer results.

The easiest way to do this is by setting a smaller time range for the searched events.

ERR: “Malformed entity id”

ERR: “Unable to decrypt entity id”

An error occurred when decrypting a unigue entity identifier.

This is an error on IMiS®/Client.

9.4.5 Level 4 —Warning

WARN: “File descriptor <decimal value> is too big for select(). Just closing.”

A function call occurred for closing a user session with an incorrect parameter.
The cause of this warning is an error in the program. This error is only theoretical,

and a specialist from the manufacturer should be consulted.

WARN: “Object header: lllegal server ID.”

The object was probably moved from a different server or the object file is corrupt. It is also
possible that IMiS®/ARChive Server was upgraded using a package with a different server

identifier. In all three cases, a specialist from the manufacturer should be consulted.

WARN: “Object header: lllegal head.”

An object file is probably corrupted, or it was replaced with a file with incorrect content
outside of IMiS®/ARChive Server. As far as the server is concerned, this file cannot be used or

read.

WARN: “Object header: Object ID mismatch (ObjlD: < hexadecimal value>; Header: <hexadecimal

value>).”

The object has an incorrect object identifier entered in its header. The object could be corrupt,
or the error is the result of an error that occurred when the object identifier was defined.

A specialist from the manufacturer should be contacted. As far as IMiS®/ARChive Server is

concerned, this file cannot be used or read.

WARN: “No available volume found in profile <decimal value>.”

Not enough space on the saving profile. A new volume needs to be added or the existing profile

volume must be enlarged.

WARN: “Seek offset underflow. Bepositioning.”

An attempt has been made to access an object at an invalid location. This error is caused by

the incorrect functioning of IMiS®/Client. This error is only theoretical.

WARN: “Unsupported Cipher algorithm requested for 128bit key strength (alg id=<decimal

value>)", alg id).”

WARN: “Invalid Cipher mode requested (id=<decimal value>)", mode id).”

WARN: “Unsupported Cipher key strength requested (key strength=<decimal value>)",

key strength).”

WARN: “Unsupported block size identifier (<decimal value>)", bs).”

WARN: “Block size identifier (<decimal value>) doesn't match crypto context.", bs).”

WARN: “Crypto exception occured (details: <description of details>)", e.what(]).”

These warnings appear when an IMiS®/Client requests an encryption method
that is not enabled in the server settings. The error is caused by incorrect encryption
subsystem settings in the client or by inadequate settings on the server in combination with

the client settings.

WARN: “Unknown exception occurred while setting up crypto context.”

An unexpected error occurred when setting up a context for encrypted communication with
IMiS@®/Client. This error is only theoretical. A specialist from the manufacturer should be

consulted.

WARN: “Audit Log Query session denied by configuration settings.”

IMiS®/ARChive Server denied a request to start a session for viewing the audit log because
IMiS®/Client is attempting to start the session with an unsupported range of encryption

parameters.

WARN: “Unsupported key type (type=<value>).”

The key type IMiS®/Client is attempting to use to start a session for viewing the audit trail is
not supported or allowed. The settings on the server and the client must be checked and

aligned.

WARN: “lllegal length of data recieved (<decimal value>). Ignoring request <decimal value>.”

When communicating with IMiS®/Client, IMiS®/ARChive Server received a request that is not
of the appropriate length. The server cannot take the request and denies it. This means there

is an error in IMiS®/Client. This error is only theoretical.

WARN: “Error deleting object (<decimal value>).”

An error occurred when executing a request to delete an object in IMiS®/ARChive Server.
The error could be cause by incorrect changes to access rights for the file objects, or the file is

not where it should be.

WARN: “Request <hexadecimal value> not expected. Ignored.”

The type of request that IMiS®/ARChive Server received from IMiS®/Client was not expected
for the session identified by the session handle (reference) of the client or it is irregular.

The server denied the request as invalid. These are usually requests sent by a client that is not
aware that the server has been restarted.

That is why their denial by the server does not lead to improper operations.

WARN: “Volume “<volume description>" has no profile assigned.”

A volume which is otherwise normally entered in the internal database of IMiS®/ARChive
Server has not been assigned to a profile. This is usually caused by a discrepancy in the internal

server database. A specialist from the manufacturer should be consulted.

WARN: “Cannot create a socket (out of file descriptors?), error <value>: <value>.”

IMiS®/ARChive Server is using the maximum allowed number of open files. The system setting
for the maximum number of open files allowed for the user with whose privileges the server is

running (by default iarc) must be increased accordingly.

WARN: “Configuration parameter ‘<parameter name>' has invalid structure and will be

ignored.”

The configuration parameter in the /etc/iarc.conf file was entered incorrectly or does not match
the expected range of values. IMiS®/ARChive Server ignores the settings and uses its default

value.

WARN: “Error <error number> while getting object id for external id <identifier>.”

The object that was previously connected to an external identifier value <identifier> does not

exist in the database.

WARBN: “Error <error number> while setting external id for object <object identifier>.”

An error occurred when connecting an existing object to an external identifier. The error is
only theoretical and could be the result of incorrect functioning in the internal database.

A specialist from the manufacturer should be notified.

WARN: “User <user name> from <computer name> did not authenticate with Audit Log Query

permissions. Query denied!”

A user sent a request for a query of the audit log, but does not have the rights for this because
the user session was not properly authenticated. This could be caused by an incorrect
configuration in IMiS®/Client or it could be a warning that a particular user is attempting to

perform an unauthorized action.

WARN: “semop() ended with error <error number>.”

A system error occurred when synchronizing processes. This is probably caused by incorrect
functioning of the operating system or a lack of system resources. As a result, the normal
operations of IMiS®/ARChive Server could be disrupted; data that have already been saved are
not in danger. We recommend notifying a specialist from the manufacturer about the error and

restarting the operating system (and also the service).

WARN: “dup(<decimal value>) error <error number>: <system description of error>.”

A system error occurred when duplicating the system identifier.
The error was probably caused by incorrect functioning of the operating system or a lack of

system resources; it is described in detail in <system description of error>.
As a result, the normal operations of IMiS®/ARChive Server could be disrupted; data that have
already been saved are not in danger. We recommend notifying a specialist from the

manufacturer about the error and restarting the operating system (and also the service).

WARN: “Cannot put socket <decimal value> in listen mode, error <error number>: <system

description of error>. Skipping to next...”

A system error occurred while listening for requests for new client connections. The error

could be caused by a lack of system resources or incorrect settings in IMiS®/ARChive Server.

WARN: “Message queue full. Increase number of serving threads.”

The request queue is full. We recommend increasing the number of serving threads in the

settings.

WARN: “Configured service ‘<service name>' cannot be resolved to a discreet port number

(error: <system description of error>). Falling back to default ‘<service name>'"...”

WARN: “Default service ‘<service name>' cannot be resolved to a discreet port number (error:

<system description of error>). Default port will not be configured.”

WARN: “Default service ‘<service name>' resolves to a unsupported protocol family. Default

port will not be configured.”

WARN: “Configured service ‘<service name>' resolves to a unsupported protocol family. Falling

back to default ‘<service name>'...”

WARN: "Address ‘<network address>', service ‘<service name>' skipped since it cannot be

resolved (error: <system description of error>).”

These warnings mean an error occurred when initializing the system for network connections.
This error could be caused by an incorrect configuration in IMiS®/ARChive Server or incorrect

functioning of the operating system.

WARN: “Maximum number of listening sockets reached (max = <decimal value>). Additional

addresses will not be used!”

These warnings mean an error occurred when initializing the system for network connections.
This error could be caused by incorrect settings in IMiS®/ARChive Server or incorrect

functioning of the operating system.

WARN: “Unable to locate template <decimal value> in entity inventory. Template: Attribute bind

record <decimal value> : <decimal value> will be ignored.”

The entity being searched for is not in the database.

WARN: #Unable to locate attribute <decimal value> in attribute inventory. Template:Attribute

bind record <decimal value> : <decimal value> will be ignored.”

WARN: “Configuration[ContentParsersl: Content parsing option DISABLED. Reason:

‘<description>"

WARN: “Configuration[FullTextlndex!: FullTextindex option DISABLED. Reason: ‘<description>"

WARN: “Configurationl<xml tag>1: Attribute '<attribute name>' required but missing or empty.

Configuration record skipped.”

WARN: “Configurationl<xml tag>]: Attribute '<attribute name>' contains an unsupported value

'<string>". Configuration record skipped.”

WARN: “Configurationl<xml tag>]: Template '<string>' not found or error accessing it.

Configuration record skipped.”

WARN: “Configurationl<xml tag>I: Invalid attribute type ‘<decimal value>' for '<string>' (FILE

required). Configuration record skipped.”

WARN: “Configurationl<xml tag>]: Configuration for template '<string>' already exists. Using

first configuration record with attribute '<string>"."

WARN: “Configurationl<xml tag>]: Unknown configuration parameter '<string>' encountered.
Skipping...”
WARN: “Legacy Achival option DISABLED. Reason: '<string>"

WARN: “Using default Security Options. Reason: '<string>"

WARN: “Configurationl<xml tag>]: Unknown configuration parameter '<string>' encountered.

Skipping...”

WARN: “Invalid XML request: Unknown reqguest tag ‘<tag name>' found, ignored.”

The request contains an unexpected XML tag. This error is not critical and does not affect the
operations of IMiS®/ARChive Server. The server ignores the unexpected XML tag.

This warning can be expected if the client version is newer than the server version.

WARN: “Volume info: Volume <number> not found in database!

The volume could not be found in the database. The volume settings need to be checked.

	1 FOREWORD
	1.1 About the documentation
	1.2 Target audience
	1.3 Conventions
	1.4 Abbreviations

	2 INTRODUCTION
	2.1 Presentation
	2.2 Versions and identifiers
	2.3 Functionality

	3 TECHNICAL DOCUMENTATION
	3.1 Server architecture
	3.2 Attribute
	3.2.1 Attribute types
	3.2.2 Parameters
	3.2.3 Links to templates
	3.2.4 Naming
	3.2.5 System attributes
	3.2.6 Email document attributes
	3.2.7 Physical record management attributes
	3.2.8 Attributes of transferred records
	3.2.9 Attributes of retention policies and disposition holds
	3.2.10 Attributes of review processes
	3.2.11 Attributes of versioned content

	3.3 Entity
	3.3.1 Types
	3.3.2 Hierarchy
	3.3.3 Components
	3.3.4 Templates
	3.3.5 Access
	3.3.5.1 Confidentiality (Security class)
	3.3.5.2 Access Control List (ACL)
	3.3.5.2.1 Access rights for an entity
	3.3.5.2.2 Access rights to metadata
	3.3.5.2.3 Exceptions
	3.3.5.2.4 Roles
	3.3.5.2.5 Explicit permission or prohibition
	3.3.5.2.6 Effective rights

	3.3.6 Identifiers
	3.3.6.1 Internal identifiers
	3.3.6.2 External identifiers
	3.3.6.3 Classification code
	3.3.6.3.1 Fully Qualified Classification Code – FQCC
	3.3.6.3.2 Public Classification Code – PCC

	3.3.7 Life cycle
	3.3.7.1 Entity status
	3.3.7.1.1 “Opened” status
	3.3.7.1.2 “Closed” Status

	3.3.7.2 Entity instance
	3.3.7.3 New entity
	3.3.7.4 Opening an entity in Read-Write or in Read-Only mode
	3.3.7.5 Reading entity content
	3.3.7.6 Editing entity content
	3.3.7.7 Saving
	3.3.7.8 Closing
	3.3.7.9 Move
	3.3.7.10 Changing the security class
	3.3.7.11 Deleting
	3.3.7.12 Changing status

	3.3.8 Audit trail
	3.3.8.1 Sessions
	3.3.8.2 Events
	3.3.8.3 Right to view the audit trail
	3.3.8.4 Query
	3.3.8.5 Report format
	3.3.8.5.1 Information about sessions: “Sessions”
	3.3.8.5.2 Information about events: “Events”

	3.3.9 Retention periods
	3.3.9.1 Managing disposition hold connections
	3.3.9.2 Managing retention policies connections

	3.3.10 Content management
	3.3.10.1 Automatic content conversion
	3.3.10.2 Performing other actions

	3.3.11 References
	3.3.12 Categories

	3.4 Classification
	3.4.1 Classification codes
	3.4.2 Classification scheme settings
	3.4.3 Moving records in the classification scheme (re-classification)

	3.5 Search
	3.5.1 Data protection and security when searching
	3.5.2 Search syntax rules
	3.5.2.1 Simple conditions for searching by metadata
	3.5.2.2 Simple conditions for searching by full text of content
	3.5.2.3 Logical operations in search syntax

	3.6 Authenticity
	3.6.1 Conditions
	3.6.2 Concept
	3.6.2.1 Hashing - #
	3.6.2.2 Digital signature and digital certificate
	3.6.2.3 Timestamps

	3.6.3 Storing digital certificates
	3.6.3.1 The digital certificate chains
	3.6.3.2 Adding digital certificates
	3.6.3.3 Enabling and disabling digital certificates
	3.6.3.4 Searching digital certificates
	3.6.3.5 Searching information about revoked certificates
	3.6.3.6 Basic constraints
	3.6.3.7 Extended key usage
	3.6.3.8 Cryptography extension

	3.6.4 ERS
	3.6.4.1 The proof generating process
	3.6.4.2 The authenticity proof renewal process
	3.6.4.2.1 Simple authenticity proof renewal process
	3.6.4.2.2 Complex authenticity proof renewal process

	3.6.4.3 Merkle tree
	3.6.4.3.1 Constructing the Merkle tree
	3.6.4.3.2 A reduced Merkle tree

	3.6.4.4 Syntax
	3.6.4.4.1 “EvidenceRecord” tag
	3.6.4.4.2 “ArchiveTimeStampChain” tag
	3.6.4.4.2.1 “ArchiveTimeStamp” tag

	3.6.4.5 Simple renewal
	3.6.4.6 Complex renewal
	3.6.4.7 Verification
	3.6.4.7.1 Verification of the starting timestamp chain
	3.6.4.7.2 Verification of the other timestamp chains

	3.6.5 AIP
	3.6.5.1 Header
	3.6.5.2 Metadata
	3.6.5.3 Digital certificates
	3.6.5.4 Information about revoked digital certificates

	3.6.6 Time stamping
	3.6.6.1 Obtaining a timestamp
	3.6.6.2 Verifying a timestamp
	3.6.6.3 Example

	3.6.7 Rules
	3.6.7.1 Rules for generating authenticity proofs
	3.6.7.2 Rules for renewing proofs

	3.7 Review process
	3.7.1 Preparation phase
	3.7.2 Decision-making phase
	3.7.3 Implementation phase
	3.7.4 The filtration process
	3.7.5 XML document format
	3.7.5.1 Read-Only document syntax
	3.7.5.1.1 »Review« tag

	This tag represents a root element and contains elements from the table below.
	3.7.5.1.2 »Header« tag

	This tag contains a version of the XML document, the start date of the preparation phase of the review process, entity classification code (represents a scope of entity searches for the review process), available actions, predetermined reasons, and id...
	3.7.5.1.3 »Entity« tag

	3.7.5.2 Read and Write document syntax
	3.7.5.2.1 »Review« tag

	This tag represents the root element of a document and contains elements from the table below:
	3.7.5.2.2 »Header« tag
	3.7.5.2.3 »Entity« tag

	3.7.5.3 Report syntax
	3.7.5.3.1 »Report« tag
	3.7.5.3.2 »Header« tag
	3.7.5.3.3 »Entity« tag

	3.8 Directory services
	3.8.1 Types
	3.8.1.1 Users
	3.8.1.2 User groups

	3.8.2 Entities defined by the system
	3.8.3 Entity components
	3.8.4 Aliases
	3.8.5 Authentication
	3.8.5.1 Authentication with PAKE
	3.8.5.1.1 SRP
	3.8.5.1.2 Protocol

	3.8.5.2 Authentication with external service
	3.8.5.2.1 LDAP
	3.8.5.2.2 Kerberos

	3.8.6 The directory entity life cycle
	3.8.6.1 Opening an entity
	3.8.6.2 Creating a directory entity
	3.8.6.3 Editing a directory entity
	3.8.6.4 Saving a directory entity
	3.8.6.5 Discarding a directory entity
	3.8.6.6 Deleting a directory entity

	3.8.7 Synchronization
	3.8.8 Plug-ins
	3.8.8.1 Configuring the LDAP plug-ins
	3.8.8.2 Configuring the SQL plug-in
	3.8.8.3 Configuring mappings
	3.8.8.4 Configuration examples

	3.9 Backup copies and restoring data
	3.9.1 Creating backup copies
	3.9.1.1 Backup copy settings

	3.9.2 Restoring data
	3.9.2.1 Data restoration settings

	3.9.3 Example
	3.9.4 Problems restoring data
	Problem 1:

	3.10 Storage
	3.10.1 Profiles
	3.10.2 Volumes

	3.11 Versioning

	4 SYSTEM REQUIREMENTS
	4.1 Hardware
	4.1.1 Planning server processor power
	4.1.2 Planning server memory capacity
	4.1.3 Planning server hard disk capacity
	4.1.4 Communication channels
	4.1.5 Connecting to network hardware
	4.1.6 Administrator rights
	4.1.7 Managing hardware operations
	4.1.8 Minimum requirements
	4.1.9 Recommended requirements

	4.2 Software
	4.2.1 Operating systems
	4.2.1.1 Recommended requirements

	4.2.2 List of required system tools
	4.2.3 List of required system libraries
	4.2.4 Minimum requirements

	5 INSTALLATION
	5.1 Installation process
	5.2 Post-installation processes
	5.2.1 Settings for the number of simultaneously opened files
	5.2.2 Settings for automatic start up

	5.3 Testing installation and settings

	6 UPGRADING
	6.1 The upgrade process
	6.2 Possible complications during upgrading

	7 REMOVAL
	7.1 The Removal process

	8 ADMINISTERING THE PRODUCT
	8.1 Starting and shutting down
	8.2 Logging operational events
	8.3 Configuration
	8.3.1 Foreseen tasks
	8.3.2 Configuration processes with console tools

	8.4 Administration
	8.4.1 The iarc.conf configuration file
	Section [Server]
	[Database] section
	[Cache] section
	[Log] section
	[AuditLog] section
	[Authentication] section
	[Admin] section

	9 TROUBLESHOOTING
	9.1 How can problems be avoided?
	9.2 Frequent problems
	9.3 Less frequent problems
	9.4 List of service errors entered in the operation log
	9.4.1 Level 0 – Emergency
	9.4.2 Level 1 – Alert
	9.4.3 Level 2 – Critical
	9.4.4 Level 3 – Error
	9.4.5 Level 4 – Warning

